综述

电化学还原去除水中含氧酸根离子研究进展

  • 侯威 ,
  • 么艳彩 ,
  • 张礼知
展开
  • 上海交通大学 环境科学与工程学院 上海 200240

侯威, 上海交通大学环境科学与工程学院2021级硕士研究生, 研究方向为电催化还原含氧酸根阴离子及其机制研究.

么艳彩, 上海交通大学环境科学与工程学院长聘教轨副教授, 研究方向为电催化、单原子催化剂在环境、能源领域的应用. 以第一作者/通讯作者身份在Nat. Catal., J. Am. Chem. Soc., Angew. Chem., Int. Ed. (2篇)、Sci. Bull.等期刊发表多篇论文, 共3篇入选ESI高被引论文, 截至2023年4月发表论文累计被引用1200余次. 申请发明专利6项, 成果转化1项. 撰写英文专著1部. 曾获中科院“百篇优博论文”和中科院院长优秀奖. 先后获得国家自然科学基金、上海市科委面上项目、科技部重点研发计划项目子课题、博后站前特别资助及博士后面上资助等7项省部级项目资助. 现任Colloid and Surface Science编委.

张礼知, 华中师范大学化学学院教授、上海交通大学特聘教授、博士生导师. 主要研究领域为污染控制化学、光催化及环境催化材料设计合成. 在Chem、Nat. Commun., J. Am. Chem. Soc., Angew. Chem., Int. Ed., Adv. Mater., Environ. Sci. Technol.等学术期刊发表论文360多篇, 其中29篇入选ESI高被引论文. 2011年获湖北省青年科技奖, 并入选湖北省自主创新“双百计划”, 2012年入选湖北省高端人才引领培养计划和湖北省高层次人才工程, 2014年起连续入选Elsevier发布“化学领域中国高被引学者榜单”, 2015年获教育部高等学校科学研究优秀成果奖(科学技术)自然科学二等奖(第一完成人), 2018年起连续入选Clarivate交叉领域全球高被引科学家榜单, 2019年获湖北省自然科学一等奖(第一完成人).

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-13

  网络出版日期: 2023-06-12

基金资助

项目受国家自然科学基金(22102100); 项目受国家自然科学基金(21936003); 上海市自然科学基金(22ZR1431700); 国家重点研发计划(2021YFA1201701); 国家重点研发计划(2018YFC1800801)

Advances in Electrochemical Reductive Removal of Oxyanions in Water

  • Wei Hou ,
  • Yancai Yao ,
  • Lizhi Zhang
Expand
  • School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-13

  Online published: 2023-06-12

Supported by

National Natural Science Foundation of China(22102100); National Natural Science Foundation of China(21936003); Natural Science Foundation of Shanghai(22ZR1431700); National Key Research and Development Program of China(2021YFA1201701); National Key Research and Development Program of China(2018YFC1800801)

摘要

含氧酸盐(硝酸盐、溴酸盐、高氯酸盐等)污染物大量排放造成的水体污染问题越来越严重. 含氧酸根离子具有持久性、难降解性、致畸性和致癌性, 对生态系统和人类健康造成极大威胁, 从而引起了全球的广泛关注. 电化学还原技术(electrochemical reduction, ER)可以利用电子或者活化水分子产生的强还原性物种——原子氢(H*), 实现水中有毒含氧酸根离子的高效、绿色、安全去除, 被认为是极具发展前景的水处理技术之一. 首先简要介绍了电化学还原去除水中含氧酸根离子的机理, 随后重点综述了电化学还原硝酸根、溴酸根、高氯酸根的研究进展, 讨论了不同环境中电化学还原去除含氧酸根离子的反应路径, 分析了催化剂结构和种类等对电化学还原含氧酸根离子的影响. 最后, 探讨和展望了电化学还原去除水中含氧酸根离子面临的挑战.

本文引用格式

侯威 , 么艳彩 , 张礼知 . 电化学还原去除水中含氧酸根离子研究进展[J]. 化学学报, 2023 , 81(8) : 979 -989 . DOI: 10.6023/A23040133

Abstract

The excessive discharge of oxyanions (i.e., nitrate, bromate, perchlorate) into water has caused more and more serious environmental pollution problems. Oxyanions are generally persistent, refractory, teratogenic and carcinogenic, posing a great threat to ecosystems and human health. Therefore, they have increasingly attracted widespread attention. Electrochemical reduction is regarded as one of the most promising water treatment technology, because it could employ either electrons or strong reductive species (atomic H*) generated by dissociating water molecules to realize the efficient, green and safe removal of toxic oxyanions. Herein, the electrochemical reduction mechanism for removing pollutants is briefly introduced, the advancements of electrochemical reduction of nitrate, bromate and perchlorate are summarized and their possible reaction pathways are discussed, the effect of catalysts (i.e., structure, types) on the performance of electrochemical reduction is further analyzed. Finally, the possible challenges of electrochemical reduction technology to remove oxyanions are deeply discussed and prospected.

参考文献

[1]
Howarth A. J.; Liu Y.; Hupp J. T.; Farha O. K. CrystEngComm 2015, 17, 7245.
[2]
Chaplin B. P.; Reinhard M.; Schneider W. F.; Schuth C.; Shapley J. R.; Strathmann T. J.; Werth C. J. Environ. Sci. Technol. 2012, 46, 3655.
[3]
Fan K.; Xie W.; Li J.; Sun Y.; Xu P.; Tang Y.; Li Z.; Shao M. Nat. Commun. 2022, 13, 7958.
[4]
Heck K. N.; Garcia-Segura S.; Westerhoff P.; Wong M. S. Acc. Chem. Res. 2019, 52, 906.
[5]
Xiao Q.; Yu S.; Li L.; Zhang Y.; Yi P. Water Res. 2019, 150, 310.
[6]
Yao F.; Zhong Y.; Yang Q.; Wang D.; Chen F.; Zhao J.; Xie T.; Jiang C.; An H.; Zeng G.; Li X. J. Hazard. Mater. 2017, 323, 602.
[7]
Shen J.; Yao F. B.; Chen S. J.; Yang L. Chin. J. Environ. Eng. 2022, 16, 12. (in Chinese)
[7]
( 申剑, 姚福兵, 陈圣杰, 杨麒, 环境工程学报, 2022, 16, 12.)
[8]
Chen X.; Huo X.; Liu J.; Wang Y.; Werth C. J.; Strathmann T. J. Chem. Eng. J. 2017, 313, 745.
[9]
Montes-Hernandez G.; Concha-Lozano N.; Renard F.; Quirico E. J. Hazard. Mater. 2009, 166, 788.
[10]
Yin Y. B.; Guo S.; Heck K. N.; Clark C. A.; Conrad C. L.; Wong M. S. ACS Sustainable Chem. Eng. 2018, 6, 11160.
[11]
Caswell T.; Dlamini M. W.; Miedziak P. J.; Pattisson S.; Davies P. R.; Taylor S. H.; Hutchings G. J. Catal. Sci. Technol. 2020, 10, 2082.
[12]
Yao F.; Yang Q.; Zhong Y.; Shu X.; Chen F.; Sun J.; Ma Y.; Fu Z.; Wang D.; Li X. Water Res. 2019, 157, 191.
[13]
Alsewaileh A. S.; Usman A. R.; Al-Wabel M. I. J. Environ. Manage. 2019, 237, 289.
[14]
Matos C. T.; Fortunato R.; Velizarov S.; Reis M. A.; Crespo J. G. Water Res. 2008, 42, 1785.
[15]
Sadyrbaeva T. Z. Chem. Eng. Process. 2016, 99, 183.
[16]
Vigla?ová E.; Galambo? M.; Danková Z.; Krivosudsky L.; Lengauer C. L.; Hood-Nowotny R.; Soja G.; Rompel A.; Matík M.; Brian?in J. Waste Manage. 2018, 79, 385.
[17]
Barrabés N.; Sá J. Appl. Catal., B 2011, 104, 1.
[18]
Liu G.; You S.; Zhang Y.; Huang H.; Spanjers H. J. Colloid Interface Sci. 2019, 553, 666.
[19]
Sheldon R. A. Angew. Chem., Int. Ed. 2020, 60, 538.
[20]
Lei C.; Liang F.; Li J.; Chen W.; Huang B. Chem. Eng. J. 2019, 358, 1054.
[21]
Xu B.; Chen Z.; Zhang G. Environ. Sci. Technol. 2022, 56, 614.
[22]
Fan Z.; Zhao H.; Wang K.; Ran W.; Sun J. F.; Liu J.; Liu R. Environ. Sci. Technol. 2023, 57, 1499.
[23]
Yao F.; Yang Q.; Sun J.; Chen F.; Zhong Y.; Yin H.; He L.; Tao Z.; Pi Z.; Wang D.; Li X. Chem. Eng. J. 2020, 389, 123588.
[24]
Zhang H. Environ. Sci. Pollut. Res. Int. 2019, 26, 10457.
[25]
Wu T.; Hu J.; Wan Y.; Qu X.; Zheng S. J. Hazard. Mater. 2022, 438, 129551.
[26]
Liu C.; Zhang G.; Li Y.; Qu J.; Liu H. Small 2018, 14, 1800421.
[27]
Li Y.; Ren L.; Wang T.; Wu Z.; Wang Z. J. Hazard. Mater. 2023, 446, 130688.
[28]
Guo Y.; Li Y.; Wang Z. Water Res. 2023, 234, 119810.
[29]
Canfield D. E.; Glazer A. N.; Falkowski P. G. Science 2010, 330, 192.
[30]
Zhu T.; Chen Q.; Liao P.; Duan W.; Liang S.; Yan Z.; Feng C. Small 2020, 16, 2004526.
[31]
Lim J.; Chen Y.; Cullen D. A.; Lee S. W.; Senftle T. P.; Hatzell M. C. ACS Catal. 2022, 13, 87.
[32]
Sun T.; Li Y. B.; Zhang R. S.; Mao R.; Wang K. F.; Liu X. B.; Guo C. H.; Zhao X. Chin. J. Environ. Eng. 2021, 41, 8. (in Chinese)
[32]
( 孙拓, 李一兵, 张汝山, 冒冉, 王开丰, 刘新兵, 郭聪慧, 赵旭, 环境科学学报, 2021, 41, 8.)
[33]
Wang Y.; Wang C.; Li M.; Yu Y.; Zhang B. Chem. Soc. Rev. 2021, 50, 6720.
[34]
Theerthagiri J.; Park J.; Das H. T.; Rahamathulla N.; Cardoso E. S. F.; Murthy A. P.; Maia G.; Vo D. V. N.; Choi M. Y. Environ. Chem. Lett. 2022, 20, 2929.
[35]
Yao Y.; Zhang L. Sci. Bull. 2022, 67, 1194.
[36]
Min B.; Gao Q.; Yan Z.; Han X.; Hosmer K.; Campbell A.; Zhu H. Ind. Eng. Chem. Res. 2021, 60, 14635.
[37]
Groot M.; Koper M. J. Electroanal. Chem. 2004, 562, 81.
[38]
Sicsic D.; Balbaud-Clrier F.; Tribollet B. Eur. J. Inorg. Chem. 2014, 17, 6174.
[39]
Xu H.; Ma Y.; Chen J.; Zhang W. X.; Yang J. Chem. Soc. Rev. 2022, 51, 2710.
[40]
Zeng Y.; Priest C.; Wang G.; Wu G. Small Methods 2020, 4, 2000672.
[41]
Zhang X.; Wang Y.; Liu C.; Yu Y.; Lu S.; Zhang B. Chem. Eng. J. 2021, 403, 126269.
[42]
Bae S. E.; Stewart K. L.; Gewirth A. A. J. Am. Chem. Soc. 2007, 129, 10171.
[43]
Meng S.; Ling Y.; Yang M.; Zhao X.; Osman A. I.; Al-Muhtaseb A. H.; Rooney D. W.; Yap P.-S. J. Environ. Chem. Eng. 2023, 11, 109418.
[44]
Garcia-Segura S.; Lanzarini-Lopes M.; Hristovski K.; Westerhoff P. Appl. Catal., B 2018, 236, 546.
[45]
Wang Z.; Young S. D.; Goldsmith B. R.; Singh N. J. Catal. 2021, 395, 143.
[46]
Katsounaros I.; Kyriacou G. Electrochim. Acta 2008, 53, 5477.
[47]
Vooys A.; Beltramo G. L.; Riet B. V.; Veen J.; Koper M. Electrochim. Acta 2004, 49, 1307.
[48]
Yoshioka T.; Iwase K.; Nakanishi S.; Hashimoto K.; Kamiya K. J. Phys. Chem. C 2016, 120, 15729.
[49]
Duca M.; Cucarella M. O.; Rodriguez P.; Koper M. J. Am. Chem. Soc. 2010, 132, 18042.
[50]
Li J.; Zhan G.; Yang J.; Quan F.; Mao C.; Liu Y.; Wang B.; Lei F.; Li L.; Chan A. W. M.; Xu L.; Shi Y.; Du Y.; Hao W.; Wong P. K.; Wang J.; Dou S. X.; Zhang L.; Yu J. C. J. Am. Chem. Soc. 2020, 142, 7036.
[51]
Li T.; Tang C.; Guo H.; Wu H.; Duan C.; Wang H.; Zhang F.; Cao Y.; Yang G.; Zhou Y. ACS Appl. Mater. Interfaces 2022, 14, 49765.
[52]
Perez-Gallent E.; Figueiredo M.; Katsounaros I.; Koper; M. T. Electrochim. Acta 2017, 227, 77.
[53]
Xu Y.-T.; Xie M.-Y.; Zhong H.; Cao Y. ACS Catal. 2022, 12, 8698.
[54]
Wang Y.; Li H.; Zhou W.; Zhang X.; Zhang B.; Yu Y. Angew. Chem., Int. Ed. 2022, 61, e202202604.
[55]
Aristizábal A.; Contreras S.; Barrabés N.; Llorca J.; Tichit D.; Medina F. Appl. Catal., B 2011, 110, 58.
[56]
Yao Y.; Zhao L.; Dai J.; Wang J.; Fang C.; Zhan G.; Zheng Q.; Hou W.; Zhang L. Angew. Chem., Int. Ed. 2022, 61, e202208215.
[57]
Yin H.; Peng Y.; Li J. Environ. Sci. Technol. 2023, 57, 3134.
[58]
Liu H.; Lang X.; Zhu C.; Timoshenko J.; Bai L.; Guijarro N.; Yin H.; Peng Y.; Li J.; Liu Z. Angew. Chem., Int. Ed. 2022, 61, e202202556.
[59]
Dima G. E.; Vooys A. D.; Koper M. J. Electroanal. Chem. 2003, 554, 15.
[60]
Guo H.; Li M.; Yang Y.; Luo R.; Liu W.; Zhang F.; Tang C.; Yang G.; Zhou Y. Small 2023, 19, 2207743.
[61]
Jr D. B.; Gewirth A. A. Nano Energy 2016, 29, 457.
[62]
Lim J.; Liu C.-Y.; Park J.; Liu Y.-H.; Senftle T. P.; Lee S. W.; Hatzell M. C. ACS Catal. 2021, 11, 7568.
[63]
Chen K.; Ma Z.; Li X.; Kang J.; Ma D.; Chu K. Adv. Funct. Mater. 2023, 33, 2209890.
[64]
Zhang Z.; Xu Y.; Shi W.; Wang W.; Zhang R.; Bao X.; Zhang B.; Li L.; Cui F. Chem. Eng. J. 2016, 290, 201.
[65]
Zhu J. Y.; Xue Q.; Xue Y. Y.; Ding Y.; Li F. M.; Jin P.; Chen P.; Chen Y. ACS Appl. Mater. Interfaces 2020, 12, 14064.
[66]
Fu X.; Zhao X.; Hu X.; He K.; Yu Y.; Li T.; Tu Q.; Qian X.; Yue Q.; Wasielewski M. R.; Kang Y. Appl. Mater. Today 2020, 19, 100620.
[67]
Xue Y.; Yu Q.; Ma Q.; Chen Y.; Zhang C.; Teng W.; Fan J.; Zhang W. X. Environ. Sci. Technol. 2022, 56, 14797.
[68]
Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y. T.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Nat. Commun. 2021, 12, 2870.
[69]
Li Y.; Ma J.; Wu Z. Environ. Sci. Technol. 2022, 56, 8673.
[70]
Deng X.; Yang Y.; Wang L.; Fu X.; Luo J. Adv. Sci. 2021, 8, 2004523.
[71]
Zheng W. X.; Zhu L. Y.; Yan Z.; Lin Z. C.; Lei Z. C.; Zhang Y. F.; Xu H. L.; Dang Z.; Wei C. H.; Feng C. H. Environ. Sci. Technol. 2021, 55, 13231.
[72]
Soltermann F.; Abegglen C.; Tschui M.; Stahel S.; Gunten U. V. Water Res. 2017, 116, 76.
[73]
Li A. Z.; Mao R.; Zhao X. Chin. Sci. China: Chem. 2014, 10, 7. (in Chinese)
[73]
( 李昂臻, 冒冉, 赵旭, 中国科学: 化学, 2014, 10, 7.)
[74]
Richardson S. D.; Plewa M. J.; Wagner E. D.; Schoeny R.; Demarini D. M. Mutat. Res.,Rev. Mutat. Res. 2007, 636, 178.
[75]
Lu Z.; Yang Q.; Hu T. Chem. Eng. J. 2022, 446, 137356.
[76]
Liang D.; Qin L.; Cui H.; Tang R.; Hui X.; Xie X.; Zhai J. Electrochim. Acta 2010, 55, 8471.
[77]
Zhao X.; Liu H.; Li A.; Shen Y.; Qu J. Electrochim. Acta 2012, 62, 181.
[78]
Townshend A. Anal. Chim. Acta 1987, 198, 333.
[79]
Mao R.; Yan L.; Zhao X.; Djellabi R.; Wang K.; Hu K.; Zhu H. Chem. Eng. J. 2022, 429, 132139.
[80]
Kishimoto N.; Matsuda N. Environ. Sci. Technol. 2009, 43, 2054.
[81]
Zhou D.; Ding L.; Cui H.; An H.; Zhai J.; Li Q. Chem. Eng. J. 2012, 200-202, 32.
[82]
Cuentas-Gallegos A. K.; Miranda-Hernández M.; Vargas-Ocampo A. Electrochim. Acta 2009, 54, 4378.
[83]
Mao R.; Zhao X.; Lan H.; Liu H.; Qu J. Appl. Catal., B 2014, 160-161, 179.
[84]
Yao F.; Yang Q.; Yan M.; Li X.; Li X. J. Hazard. Mater. 2019, 386, 121651.
[85]
Lan H.; Mao R.; Tong Y.; Liu Y.; Liu H.; An X.; Liu R. Environ. Sci. Technol. 2016, 50, 11872.
[86]
Conner W. C.; Falconer J. L. Chem. Rev. 1995, 95, 123.
[87]
Nutt M.; Hughes J.; Wong M. Environ. Sci. Technol. 2005, 39, 1346.
[88]
Figueras C. F. J. Mol. Catal. A: Chem. 2001, 173, 117.
[89]
Witonska I. A.; Walock M. J.; Dziugan P.; Karski S.; Stanishevsky A. V. Appl. Surf. Sci. 2013, 273, 330.
[90]
Zhou Y.; Zhang G.; Ji Q.; Zhang W.; Zhang J.; Liu H.; Qu J. Environ. Sci. Technol. 2019, 53, 11383.
[91]
Yao Q.; Zhou X.; Xiao S.; Chen J.; Zhang Y. Water Res. 2019, 165, 114930.
[92]
Gao J. N.; Jiang B.; Ni C. C.; Qi Y. F.; Zhang Y. Q.; Oturan N.; Oturan M. A. Appl. Catal., B 2019, 254, 391.
[93]
Cao F.; Jaunat J.; Sturchio N.; Cances B.; Morvan X.; Devos A.; Barbin V.; Ollivier P. Sci. Total Environ. 2019, 661, 737.
[94]
Li H.; Zhou L.; Lin H.; Zhang W.; Xia S. Sci. Total Environ. 2019, 694, 133564.
[95]
Fang Q. L.; Chen B. L. Chin. J. Environ. Eng. 2011, 31, 1569. (in Chinese)
[95]
( 方齐乐, 陈宝梁, 环境科学学报, 2011, 31, 1569.)
[96]
Ren C.; Yang P.; Sun J.; Bi E. Y.; Gao J.; Palmer J.; Zhu M.; Wu Y.; Liu J. J. Am. Chem. Soc. 2021, 143, 7891.
[97]
Scheytt T. J.; Freywald J.; Ptacek C. J. Grundwasser 2011, 16, 37.
[98]
Greer M. A.; Goodman G.; Pleus R. C.; Greer S. E. Environ. Health Perspect. 2005, 113, A 732.
[99]
Cartier T.; Baert A.; Cabillic P. J.; Casellas C.; Joyeux M. Environnement, Risques & Sante 2012, 11, 316.
[100]
Yang Q.; Yao F.; Zhong Y.; Wang D.; Chen F.; Sun J.; Hua S.; Li S.; Li X.; Zeng G. Chem. Eng. J. 2016, 306, 1081.
[101]
Wasberg M.; Horányi G. J. Electroanal. Chem. 1995, 381, 151.
[102]
Láng G. G.; Horányi G. J. Electroanal. Chem. 2003, 552, 197.
[103]
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
[104]
Mahmudov R.; Shu Y.; Rykov S.; Chen J.; Huang C. P. Appl. Catal., B 2008, 81, 78.
[105]
Rusanova M. Y.; PolasKova P.; Muzika M.; Fawcett W. R. Electrochim. Acta 2006, 51, 3097.
[106]
Wang D.; Huang C.; Chen J.; Lin H.; Shah S. Sep. Purif. Technol. 2007, 58, 129.
[107]
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
[108]
Hurley K. D.; Shapley J. R. Environ. Sci. Technol. 2007, 41, 2044.
[109]
Wang P.-Y.; Chen C.-L.; Huang C. P. J. Environ. Eng. 2019, 145, 04019046.
[110]
Xu B.; Zhai Y.; Chen W.; Wang B.; Wang T.; Zhang C.; Li C.; Zeng G. Chem. Eng. J. 2018, 348, 765.
[111]
Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127.
[112]
Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436.
[113]
Kim Y.-N.; Lee Y.-C.; Choi M. Carbon 2013, 65, 315.
[114]
Ge L.; Rabiee H.; Li M. Chem 2022, 8, 663.
[115]
Ma J.; Wei W.; Qin G.; Xiao T.; Tang W.; Zhao S.; Jiang L.; Liu S. Water Res. 2022, 208, 117862.
[116]
Misal S. N.; Lin M. H.; Mehraeen S.; Chaplin B. P. J. Hazard. Mater. 2022, 384, 121420.
[117]
Almassi S.; Ren C.; Liu J.; Chaplin B. P. Environ. Sci. Technol. 2022, 56, 3267.
[118]
Seibert D.; Zorzo C. F.; Borba F. H.; De Souza R. M.; Quesada H. B.; Bergamasco R.; Baptista A. T.; Inticher J. J. Sci. Total Environ. 2020, 748, 141527.
[119]
Zhang Y.; Guo L.; Tao L.; Lu Y.; Wang S. Small Methods 2018, 3, 1800406.
[120]
Hu X.; Hu G.; Li X.; Zhao X.; Zhou Y.; Hu J.; Zhang H. Appl. Surf. Sci. 2022, 584, 152556.
[121]
Meng N.; Huang Y.; Liu Y.; Yu Y.; Zhang B. Cell Rep. Phys. Sci. 2021, 2, 100378.
[122]
Qin J.; Liu N.; Chen L.; Wu K.; Zhao Q.; Liu B.; Ye Z. ACS Sustainable Chem. Eng. 2022, 10, 15869.
[123]
Pei S.; Shi H.; Zhang J.; Wang S.; Ren N.; You S. J. Hazard. Mater. 2021, 419, 126434.
文章导航

/