电化学还原去除水中含氧酸根离子研究进展★
收稿日期: 2023-04-13
网络出版日期: 2023-06-12
基金资助
项目受国家自然科学基金(22102100); 项目受国家自然科学基金(21936003); 上海市自然科学基金(22ZR1431700); 国家重点研发计划(2021YFA1201701); 国家重点研发计划(2018YFC1800801)
Advances in Electrochemical Reductive Removal of Oxyanions in Water★
Received date: 2023-04-13
Online published: 2023-06-12
Supported by
National Natural Science Foundation of China(22102100); National Natural Science Foundation of China(21936003); Natural Science Foundation of Shanghai(22ZR1431700); National Key Research and Development Program of China(2021YFA1201701); National Key Research and Development Program of China(2018YFC1800801)
含氧酸盐(硝酸盐、溴酸盐、高氯酸盐等)污染物大量排放造成的水体污染问题越来越严重. 含氧酸根离子具有持久性、难降解性、致畸性和致癌性, 对生态系统和人类健康造成极大威胁, 从而引起了全球的广泛关注. 电化学还原技术(electrochemical reduction, ER)可以利用电子或者活化水分子产生的强还原性物种——原子氢(H*), 实现水中有毒含氧酸根离子的高效、绿色、安全去除, 被认为是极具发展前景的水处理技术之一. 首先简要介绍了电化学还原去除水中含氧酸根离子的机理, 随后重点综述了电化学还原硝酸根、溴酸根、高氯酸根的研究进展, 讨论了不同环境中电化学还原去除含氧酸根离子的反应路径, 分析了催化剂结构和种类等对电化学还原含氧酸根离子的影响. 最后, 探讨和展望了电化学还原去除水中含氧酸根离子面临的挑战.
侯威 , 么艳彩 , 张礼知 . 电化学还原去除水中含氧酸根离子研究进展★[J]. 化学学报, 2023 , 81(8) : 979 -989 . DOI: 10.6023/A23040133
The excessive discharge of oxyanions (i.e., nitrate, bromate, perchlorate) into water has caused more and more serious environmental pollution problems. Oxyanions are generally persistent, refractory, teratogenic and carcinogenic, posing a great threat to ecosystems and human health. Therefore, they have increasingly attracted widespread attention. Electrochemical reduction is regarded as one of the most promising water treatment technology, because it could employ either electrons or strong reductive species (atomic H*) generated by dissociating water molecules to realize the efficient, green and safe removal of toxic oxyanions. Herein, the electrochemical reduction mechanism for removing pollutants is briefly introduced, the advancements of electrochemical reduction of nitrate, bromate and perchlorate are summarized and their possible reaction pathways are discussed, the effect of catalysts (i.e., structure, types) on the performance of electrochemical reduction is further analyzed. Finally, the possible challenges of electrochemical reduction technology to remove oxyanions are deeply discussed and prospected.
| [1] | Howarth A. J.; Liu Y.; Hupp J. T.; Farha O. K. CrystEngComm 2015, 17, 7245. |
| [2] | Chaplin B. P.; Reinhard M.; Schneider W. F.; Schuth C.; Shapley J. R.; Strathmann T. J.; Werth C. J. Environ. Sci. Technol. 2012, 46, 3655. |
| [3] | Fan K.; Xie W.; Li J.; Sun Y.; Xu P.; Tang Y.; Li Z.; Shao M. Nat. Commun. 2022, 13, 7958. |
| [4] | Heck K. N.; Garcia-Segura S.; Westerhoff P.; Wong M. S. Acc. Chem. Res. 2019, 52, 906. |
| [5] | Xiao Q.; Yu S.; Li L.; Zhang Y.; Yi P. Water Res. 2019, 150, 310. |
| [6] | Yao F.; Zhong Y.; Yang Q.; Wang D.; Chen F.; Zhao J.; Xie T.; Jiang C.; An H.; Zeng G.; Li X. J. Hazard. Mater. 2017, 323, 602. |
| [7] | Shen J.; Yao F. B.; Chen S. J.; Yang L. Chin. J. Environ. Eng. 2022, 16, 12. (in Chinese) |
| [7] | ( 申剑, 姚福兵, 陈圣杰, 杨麒, 环境工程学报, 2022, 16, 12.) |
| [8] | Chen X.; Huo X.; Liu J.; Wang Y.; Werth C. J.; Strathmann T. J. Chem. Eng. J. 2017, 313, 745. |
| [9] | Montes-Hernandez G.; Concha-Lozano N.; Renard F.; Quirico E. J. Hazard. Mater. 2009, 166, 788. |
| [10] | Yin Y. B.; Guo S.; Heck K. N.; Clark C. A.; Conrad C. L.; Wong M. S. ACS Sustainable Chem. Eng. 2018, 6, 11160. |
| [11] | Caswell T.; Dlamini M. W.; Miedziak P. J.; Pattisson S.; Davies P. R.; Taylor S. H.; Hutchings G. J. Catal. Sci. Technol. 2020, 10, 2082. |
| [12] | Yao F.; Yang Q.; Zhong Y.; Shu X.; Chen F.; Sun J.; Ma Y.; Fu Z.; Wang D.; Li X. Water Res. 2019, 157, 191. |
| [13] | Alsewaileh A. S.; Usman A. R.; Al-Wabel M. I. J. Environ. Manage. 2019, 237, 289. |
| [14] | Matos C. T.; Fortunato R.; Velizarov S.; Reis M. A.; Crespo J. G. Water Res. 2008, 42, 1785. |
| [15] | Sadyrbaeva T. Z. Chem. Eng. Process. 2016, 99, 183. |
| [16] | Vigla?ová E.; Galambo? M.; Danková Z.; Krivosudsky L.; Lengauer C. L.; Hood-Nowotny R.; Soja G.; Rompel A.; Matík M.; Brian?in J. Waste Manage. 2018, 79, 385. |
| [17] | Barrabés N.; Sá J. Appl. Catal., B 2011, 104, 1. |
| [18] | Liu G.; You S.; Zhang Y.; Huang H.; Spanjers H. J. Colloid Interface Sci. 2019, 553, 666. |
| [19] | Sheldon R. A. Angew. Chem., Int. Ed. 2020, 60, 538. |
| [20] | Lei C.; Liang F.; Li J.; Chen W.; Huang B. Chem. Eng. J. 2019, 358, 1054. |
| [21] | Xu B.; Chen Z.; Zhang G. Environ. Sci. Technol. 2022, 56, 614. |
| [22] | Fan Z.; Zhao H.; Wang K.; Ran W.; Sun J. F.; Liu J.; Liu R. Environ. Sci. Technol. 2023, 57, 1499. |
| [23] | Yao F.; Yang Q.; Sun J.; Chen F.; Zhong Y.; Yin H.; He L.; Tao Z.; Pi Z.; Wang D.; Li X. Chem. Eng. J. 2020, 389, 123588. |
| [24] | Zhang H. Environ. Sci. Pollut. Res. Int. 2019, 26, 10457. |
| [25] | Wu T.; Hu J.; Wan Y.; Qu X.; Zheng S. J. Hazard. Mater. 2022, 438, 129551. |
| [26] | Liu C.; Zhang G.; Li Y.; Qu J.; Liu H. Small 2018, 14, 1800421. |
| [27] | Li Y.; Ren L.; Wang T.; Wu Z.; Wang Z. J. Hazard. Mater. 2023, 446, 130688. |
| [28] | Guo Y.; Li Y.; Wang Z. Water Res. 2023, 234, 119810. |
| [29] | Canfield D. E.; Glazer A. N.; Falkowski P. G. Science 2010, 330, 192. |
| [30] | Zhu T.; Chen Q.; Liao P.; Duan W.; Liang S.; Yan Z.; Feng C. Small 2020, 16, 2004526. |
| [31] | Lim J.; Chen Y.; Cullen D. A.; Lee S. W.; Senftle T. P.; Hatzell M. C. ACS Catal. 2022, 13, 87. |
| [32] | Sun T.; Li Y. B.; Zhang R. S.; Mao R.; Wang K. F.; Liu X. B.; Guo C. H.; Zhao X. Chin. J. Environ. Eng. 2021, 41, 8. (in Chinese) |
| [32] | ( 孙拓, 李一兵, 张汝山, 冒冉, 王开丰, 刘新兵, 郭聪慧, 赵旭, 环境科学学报, 2021, 41, 8.) |
| [33] | Wang Y.; Wang C.; Li M.; Yu Y.; Zhang B. Chem. Soc. Rev. 2021, 50, 6720. |
| [34] | Theerthagiri J.; Park J.; Das H. T.; Rahamathulla N.; Cardoso E. S. F.; Murthy A. P.; Maia G.; Vo D. V. N.; Choi M. Y. Environ. Chem. Lett. 2022, 20, 2929. |
| [35] | Yao Y.; Zhang L. Sci. Bull. 2022, 67, 1194. |
| [36] | Min B.; Gao Q.; Yan Z.; Han X.; Hosmer K.; Campbell A.; Zhu H. Ind. Eng. Chem. Res. 2021, 60, 14635. |
| [37] | Groot M.; Koper M. J. Electroanal. Chem. 2004, 562, 81. |
| [38] | Sicsic D.; Balbaud-Clrier F.; Tribollet B. Eur. J. Inorg. Chem. 2014, 17, 6174. |
| [39] | Xu H.; Ma Y.; Chen J.; Zhang W. X.; Yang J. Chem. Soc. Rev. 2022, 51, 2710. |
| [40] | Zeng Y.; Priest C.; Wang G.; Wu G. Small Methods 2020, 4, 2000672. |
| [41] | Zhang X.; Wang Y.; Liu C.; Yu Y.; Lu S.; Zhang B. Chem. Eng. J. 2021, 403, 126269. |
| [42] | Bae S. E.; Stewart K. L.; Gewirth A. A. J. Am. Chem. Soc. 2007, 129, 10171. |
| [43] | Meng S.; Ling Y.; Yang M.; Zhao X.; Osman A. I.; Al-Muhtaseb A. H.; Rooney D. W.; Yap P.-S. J. Environ. Chem. Eng. 2023, 11, 109418. |
| [44] | Garcia-Segura S.; Lanzarini-Lopes M.; Hristovski K.; Westerhoff P. Appl. Catal., B 2018, 236, 546. |
| [45] | Wang Z.; Young S. D.; Goldsmith B. R.; Singh N. J. Catal. 2021, 395, 143. |
| [46] | Katsounaros I.; Kyriacou G. Electrochim. Acta 2008, 53, 5477. |
| [47] | Vooys A.; Beltramo G. L.; Riet B. V.; Veen J.; Koper M. Electrochim. Acta 2004, 49, 1307. |
| [48] | Yoshioka T.; Iwase K.; Nakanishi S.; Hashimoto K.; Kamiya K. J. Phys. Chem. C 2016, 120, 15729. |
| [49] | Duca M.; Cucarella M. O.; Rodriguez P.; Koper M. J. Am. Chem. Soc. 2010, 132, 18042. |
| [50] | Li J.; Zhan G.; Yang J.; Quan F.; Mao C.; Liu Y.; Wang B.; Lei F.; Li L.; Chan A. W. M.; Xu L.; Shi Y.; Du Y.; Hao W.; Wong P. K.; Wang J.; Dou S. X.; Zhang L.; Yu J. C. J. Am. Chem. Soc. 2020, 142, 7036. |
| [51] | Li T.; Tang C.; Guo H.; Wu H.; Duan C.; Wang H.; Zhang F.; Cao Y.; Yang G.; Zhou Y. ACS Appl. Mater. Interfaces 2022, 14, 49765. |
| [52] | Perez-Gallent E.; Figueiredo M.; Katsounaros I.; Koper; M. T. Electrochim. Acta 2017, 227, 77. |
| [53] | Xu Y.-T.; Xie M.-Y.; Zhong H.; Cao Y. ACS Catal. 2022, 12, 8698. |
| [54] | Wang Y.; Li H.; Zhou W.; Zhang X.; Zhang B.; Yu Y. Angew. Chem., Int. Ed. 2022, 61, e202202604. |
| [55] | Aristizábal A.; Contreras S.; Barrabés N.; Llorca J.; Tichit D.; Medina F. Appl. Catal., B 2011, 110, 58. |
| [56] | Yao Y.; Zhao L.; Dai J.; Wang J.; Fang C.; Zhan G.; Zheng Q.; Hou W.; Zhang L. Angew. Chem., Int. Ed. 2022, 61, e202208215. |
| [57] | Yin H.; Peng Y.; Li J. Environ. Sci. Technol. 2023, 57, 3134. |
| [58] | Liu H.; Lang X.; Zhu C.; Timoshenko J.; Bai L.; Guijarro N.; Yin H.; Peng Y.; Li J.; Liu Z. Angew. Chem., Int. Ed. 2022, 61, e202202556. |
| [59] | Dima G. E.; Vooys A. D.; Koper M. J. Electroanal. Chem. 2003, 554, 15. |
| [60] | Guo H.; Li M.; Yang Y.; Luo R.; Liu W.; Zhang F.; Tang C.; Yang G.; Zhou Y. Small 2023, 19, 2207743. |
| [61] | Jr D. B.; Gewirth A. A. Nano Energy 2016, 29, 457. |
| [62] | Lim J.; Liu C.-Y.; Park J.; Liu Y.-H.; Senftle T. P.; Lee S. W.; Hatzell M. C. ACS Catal. 2021, 11, 7568. |
| [63] | Chen K.; Ma Z.; Li X.; Kang J.; Ma D.; Chu K. Adv. Funct. Mater. 2023, 33, 2209890. |
| [64] | Zhang Z.; Xu Y.; Shi W.; Wang W.; Zhang R.; Bao X.; Zhang B.; Li L.; Cui F. Chem. Eng. J. 2016, 290, 201. |
| [65] | Zhu J. Y.; Xue Q.; Xue Y. Y.; Ding Y.; Li F. M.; Jin P.; Chen P.; Chen Y. ACS Appl. Mater. Interfaces 2020, 12, 14064. |
| [66] | Fu X.; Zhao X.; Hu X.; He K.; Yu Y.; Li T.; Tu Q.; Qian X.; Yue Q.; Wasielewski M. R.; Kang Y. Appl. Mater. Today 2020, 19, 100620. |
| [67] | Xue Y.; Yu Q.; Ma Q.; Chen Y.; Zhang C.; Teng W.; Fan J.; Zhang W. X. Environ. Sci. Technol. 2022, 56, 14797. |
| [68] | Wu Z. Y.; Karamad M.; Yong X.; Huang Q.; Cullen D. A.; Zhu P.; Xia C.; Xiao Q.; Shakouri M.; Chen F. Y.; Kim J. Y. T.; Xia Y.; Heck K.; Hu Y.; Wong M. S.; Li Q.; Gates I.; Siahrostami S.; Wang H. Nat. Commun. 2021, 12, 2870. |
| [69] | Li Y.; Ma J.; Wu Z. Environ. Sci. Technol. 2022, 56, 8673. |
| [70] | Deng X.; Yang Y.; Wang L.; Fu X.; Luo J. Adv. Sci. 2021, 8, 2004523. |
| [71] | Zheng W. X.; Zhu L. Y.; Yan Z.; Lin Z. C.; Lei Z. C.; Zhang Y. F.; Xu H. L.; Dang Z.; Wei C. H.; Feng C. H. Environ. Sci. Technol. 2021, 55, 13231. |
| [72] | Soltermann F.; Abegglen C.; Tschui M.; Stahel S.; Gunten U. V. Water Res. 2017, 116, 76. |
| [73] | Li A. Z.; Mao R.; Zhao X. Chin. Sci. China: Chem. 2014, 10, 7. (in Chinese) |
| [73] | ( 李昂臻, 冒冉, 赵旭, 中国科学: 化学, 2014, 10, 7.) |
| [74] | Richardson S. D.; Plewa M. J.; Wagner E. D.; Schoeny R.; Demarini D. M. Mutat. Res.,Rev. Mutat. Res. 2007, 636, 178. |
| [75] | Lu Z.; Yang Q.; Hu T. Chem. Eng. J. 2022, 446, 137356. |
| [76] | Liang D.; Qin L.; Cui H.; Tang R.; Hui X.; Xie X.; Zhai J. Electrochim. Acta 2010, 55, 8471. |
| [77] | Zhao X.; Liu H.; Li A.; Shen Y.; Qu J. Electrochim. Acta 2012, 62, 181. |
| [78] | Townshend A. Anal. Chim. Acta 1987, 198, 333. |
| [79] | Mao R.; Yan L.; Zhao X.; Djellabi R.; Wang K.; Hu K.; Zhu H. Chem. Eng. J. 2022, 429, 132139. |
| [80] | Kishimoto N.; Matsuda N. Environ. Sci. Technol. 2009, 43, 2054. |
| [81] | Zhou D.; Ding L.; Cui H.; An H.; Zhai J.; Li Q. Chem. Eng. J. 2012, 200-202, 32. |
| [82] | Cuentas-Gallegos A. K.; Miranda-Hernández M.; Vargas-Ocampo A. Electrochim. Acta 2009, 54, 4378. |
| [83] | Mao R.; Zhao X.; Lan H.; Liu H.; Qu J. Appl. Catal., B 2014, 160-161, 179. |
| [84] | Yao F.; Yang Q.; Yan M.; Li X.; Li X. J. Hazard. Mater. 2019, 386, 121651. |
| [85] | Lan H.; Mao R.; Tong Y.; Liu Y.; Liu H.; An X.; Liu R. Environ. Sci. Technol. 2016, 50, 11872. |
| [86] | Conner W. C.; Falconer J. L. Chem. Rev. 1995, 95, 123. |
| [87] | Nutt M.; Hughes J.; Wong M. Environ. Sci. Technol. 2005, 39, 1346. |
| [88] | Figueras C. F. J. Mol. Catal. A: Chem. 2001, 173, 117. |
| [89] | Witonska I. A.; Walock M. J.; Dziugan P.; Karski S.; Stanishevsky A. V. Appl. Surf. Sci. 2013, 273, 330. |
| [90] | Zhou Y.; Zhang G.; Ji Q.; Zhang W.; Zhang J.; Liu H.; Qu J. Environ. Sci. Technol. 2019, 53, 11383. |
| [91] | Yao Q.; Zhou X.; Xiao S.; Chen J.; Zhang Y. Water Res. 2019, 165, 114930. |
| [92] | Gao J. N.; Jiang B.; Ni C. C.; Qi Y. F.; Zhang Y. Q.; Oturan N.; Oturan M. A. Appl. Catal., B 2019, 254, 391. |
| [93] | Cao F.; Jaunat J.; Sturchio N.; Cances B.; Morvan X.; Devos A.; Barbin V.; Ollivier P. Sci. Total Environ. 2019, 661, 737. |
| [94] | Li H.; Zhou L.; Lin H.; Zhang W.; Xia S. Sci. Total Environ. 2019, 694, 133564. |
| [95] | Fang Q. L.; Chen B. L. Chin. J. Environ. Eng. 2011, 31, 1569. (in Chinese) |
| [95] | ( 方齐乐, 陈宝梁, 环境科学学报, 2011, 31, 1569.) |
| [96] | Ren C.; Yang P.; Sun J.; Bi E. Y.; Gao J.; Palmer J.; Zhu M.; Wu Y.; Liu J. J. Am. Chem. Soc. 2021, 143, 7891. |
| [97] | Scheytt T. J.; Freywald J.; Ptacek C. J. Grundwasser 2011, 16, 37. |
| [98] | Greer M. A.; Goodman G.; Pleus R. C.; Greer S. E. Environ. Health Perspect. 2005, 113, A 732. |
| [99] | Cartier T.; Baert A.; Cabillic P. J.; Casellas C.; Joyeux M. Environnement, Risques & Sante 2012, 11, 316. |
| [100] | Yang Q.; Yao F.; Zhong Y.; Wang D.; Chen F.; Sun J.; Hua S.; Li S.; Li X.; Zeng G. Chem. Eng. J. 2016, 306, 1081. |
| [101] | Wasberg M.; Horányi G. J. Electroanal. Chem. 1995, 381, 151. |
| [102] | Láng G. G.; Horányi G. J. Electroanal. Chem. 2003, 552, 197. |
| [103] | Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436. |
| [104] | Mahmudov R.; Shu Y.; Rykov S.; Chen J.; Huang C. P. Appl. Catal., B 2008, 81, 78. |
| [105] | Rusanova M. Y.; PolasKova P.; Muzika M.; Fawcett W. R. Electrochim. Acta 2006, 51, 3097. |
| [106] | Wang D.; Huang C.; Chen J.; Lin H.; Shah S. Sep. Purif. Technol. 2007, 58, 129. |
| [107] | Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127. |
| [108] | Hurley K. D.; Shapley J. R. Environ. Sci. Technol. 2007, 41, 2044. |
| [109] | Wang P.-Y.; Chen C.-L.; Huang C. P. J. Environ. Eng. 2019, 145, 04019046. |
| [110] | Xu B.; Zhai Y.; Chen W.; Wang B.; Wang T.; Zhang C.; Li C.; Zeng G. Chem. Eng. J. 2018, 348, 765. |
| [111] | Wang D. M.; Lin H. Y.; Shah S. I.; Ni C. Y.; Huang C. P. Sep. Purif. Technol. 2009, 67, 127. |
| [112] | Láng G. G.; Sas N. S.; Ujvári M.; Horányi G. Electrochim. Acta 2008, 53, 7436. |
| [113] | Kim Y.-N.; Lee Y.-C.; Choi M. Carbon 2013, 65, 315. |
| [114] | Ge L.; Rabiee H.; Li M. Chem 2022, 8, 663. |
| [115] | Ma J.; Wei W.; Qin G.; Xiao T.; Tang W.; Zhao S.; Jiang L.; Liu S. Water Res. 2022, 208, 117862. |
| [116] | Misal S. N.; Lin M. H.; Mehraeen S.; Chaplin B. P. J. Hazard. Mater. 2022, 384, 121420. |
| [117] | Almassi S.; Ren C.; Liu J.; Chaplin B. P. Environ. Sci. Technol. 2022, 56, 3267. |
| [118] | Seibert D.; Zorzo C. F.; Borba F. H.; De Souza R. M.; Quesada H. B.; Bergamasco R.; Baptista A. T.; Inticher J. J. Sci. Total Environ. 2020, 748, 141527. |
| [119] | Zhang Y.; Guo L.; Tao L.; Lu Y.; Wang S. Small Methods 2018, 3, 1800406. |
| [120] | Hu X.; Hu G.; Li X.; Zhao X.; Zhou Y.; Hu J.; Zhang H. Appl. Surf. Sci. 2022, 584, 152556. |
| [121] | Meng N.; Huang Y.; Liu Y.; Yu Y.; Zhang B. Cell Rep. Phys. Sci. 2021, 2, 100378. |
| [122] | Qin J.; Liu N.; Chen L.; Wu K.; Zhao Q.; Liu B.; Ye Z. ACS Sustainable Chem. Eng. 2022, 10, 15869. |
| [123] | Pei S.; Shi H.; Zhang J.; Wang S.; Ren N.; You S. J. Hazard. Mater. 2021, 419, 126434. |
/
| 〈 |
|
〉 |