综述

冷冻电子显微镜技术进展及环境研究应用

  • 杨宇洁 ,
  • 巩宇锈 ,
  • 顾天航 ,
  • 张伟贤
展开
  • a 同济大学环境科学与工程学院 污染控制与资源化研究国家重点实验室 上海 200092
    b 岭南现代农业科学与技术广东省实验室 广州 510642

杨宇洁, 同济大学环境科学与工程学院2021级硕士生, 研究方向为纳米零价铁环境应用.

巩宇锈, 同济大学环境科学与工程学院2017级博士, 研究方向为纳米零价铁修复重金属污染土壤.

顾天航, 同济大学环境科学与工程学院2018级博士生, 研究方向为纳米零价铁富集水中稀有元素, 已发表SCI论文10余篇.

张伟贤, 教授、博士生导师, 国家特聘专家, 2011年起任污染控制与资源化研究国家重点实验室主任. 1984年毕业于同济大学, 1996年获美国约翰•霍普金斯大学(The Johns Hopkins University)环境工程博士学位, 曾任美国里海大学(Lehigh University)教授. 主持过国家自然科学基金海外及港澳学者合作研究基金及多项国家自然科学基金项目. 长期致力于环境中重金属及持久性有机污染物的基础与应用研究, 是环境纳米技术的先驱之一, 纳米零价铁技术的创始研究者. 在纳米零价铁合成、表征、污染物反应机理、应用于地下水修复及废水处理方面发表了系列经典论文.

庆祝《化学学报》创刊90周年.

收稿日期: 2023-04-26

  网络出版日期: 2023-06-28

基金资助

项目受广东省重点领域研发计划(2020B0202080001); 国家自然科学基金(51978488)

Progress and Environmental Research Applications of Cryo-Electron Microscopy

  • Yujie Yang ,
  • Yuxiu Gong ,
  • Tianhang Gu ,
  • Wei-xian Zhang
Expand
  • a State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092
    b Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642
Dedicated to the 90th anniversary of Acta Chimica Sinica.

Received date: 2023-04-26

  Online published: 2023-06-28

Supported by

Key-Area Research and Development Program of Guangdong Province(2020B0202080001); National Natural Science Foundation of China(51978488)

摘要

电子显微镜是表征微观粒子结构的必要手段, 但预处理过程会对含水样品结构造成破坏, 导致结果失真. 冷冻电子显微镜(Cryo-EM)技术通过将样品在低温下快速冷冻, 使水合样品处于无定形玻璃态冰层内, 在保障高真空度要求的同时减少电子辐射对样品的破坏, 目前已成为高分辨地观察含水样品原始状态下结构最先进的手段, 在生物、材料等领域应用广泛. 本综述总结了冷冻电镜在电子元件、成像技术与分辨率等方面的进展, 综述了样品制备方法及三维重构技术. 鉴于绝大多数环境样品为含水样品, 冷冻电镜技术在大气、水体、土壤等环境介质中的应用扩宽和深化了对环境中微纳米粒子本身形态结构和粒子间相互作用关系的理解. 我们期待冷冻电镜为环境科学研究带来突破性贡献.

本文引用格式

杨宇洁 , 巩宇锈 , 顾天航 , 张伟贤 . 冷冻电子显微镜技术进展及环境研究应用[J]. 化学学报, 2023 , 81(8) : 990 -1001 . DOI: 10.6023/A23040166

Abstract

Electron microscopy (EM) is one of the most important techniques to characterize the morphology and structure of micro- and nano-particles. However, conventional procedures for sample preparation often alter the structure and morphology of samples with high water contents, causing distortions and misinterpretations for EM characterizations. The invention of Cryo-electron microscopy (Cryo-EM) has largely solved this problem. Via rapidly freezing the hydrated samples at low temperatures, cryogenic techniques instantaneously transform liquid water into amorphous ice to ensure high vacuum and reduce electron radiation damage, allowing researchers to observe hydrated samples in their native state with high resolution. For example, applications of Cryo-EM during the COVID-19 pandemic have demonstrated the amazing ability of Cryo-EM to visualize the detailed structure of SARS-CoV-2 viruses, which provides vital knowledge for rapid and reliable detection and diagnosis of the disease, transmission mitigation, and vaccine development. So far, Cryo-EM technology has been widely used in materials, biology, pharmaceuticals, and other fields of research, successfully broadening and deepening the understanding of the interactions between micro- and nano-particles. This review summarizes the recent development of Cryo-EM from aspects of electronic components, imaging technology, and resolution and introduces the sample preparation methods. Furthermore, the three-dimensional reconstruction method is highlighted to advance the EM method from 2D to 3D. As most environmental samples are highly hydrated, Cryo-EM will likely become an essential tool to investigate microscopic particles in the environmental field. This review gives examples of the applications of Cryo-EM in the formation of aerosol particles in the atmosphere, observing biofilm morphology in the water treatment process, the pore structure of activated sludge flocs, and the potential mechanism of soil microorganisms on heavy metal remediation. Finally, the prospects of Cryo-EM are summarized and discussed. We expect that with software, hardware, and artificial intelligence development, Cryo-EM technology can achieve faster data acquisition and higher resolution and make breakthrough contributions to environmental chemistry research.

参考文献

[1]
Ball P. Chem. Rev. 2008, 108, 74.
[2]
Ball P. Proc. Natl. Acad. Sci. U. S. A. 2017, 114, 13327.
[3]
Yao H. P.; Song Y. T.; Chen Y.; Wu N. P.; Xu J. L.; Sun C. J.; Zhang J. X.; Weng T. H.; Zhang Z. Y.; Wu Z. G.; Cheng L. F.; Shi D. R.; Lu X. Y.; Lei J. L.; Crispin M.; Shi Y. G.; Li L. J.; Li S. Cell 2020, 183, 730.
[4]
Adrian M.; Dubochet J.; Lepault J.; Mcdowall A. W. Nature 1984, 308, 32.
[5]
Mendonca L.; Howe A.; Gilchrist J. B.; Sheng Y. W.; Sun D. P.; Knight M. L.; Zanetti-Domingues L. C.; Bateman B.; Krebs A. S.; Chen L.; Radecke J.; Li V. V. D.; Ni T.; Kounatidis I.; Koronfel M. A.; Szynkiewicz M.; Harkiolaki M.; Martin-Fernandez M. L.; James W.; Zhang P. J. Nat. Commun. 2021, 12, 4629.
[6]
Fernandez-Leiro R.; Scheres S. H. Nature 2016, 537, 339.
[7]
Fitzpatrick A. W. P.; Falcon B.; He S.; Murzin A. G.; Murshudov G.; Garringer H. J.; Crowther R. A.; Ghetti B.; Goedert M.; Scheres S. H. W. Nature 2017, 547, 185.
[8]
Shi Y.; Murzin A. G.; Falcon B.; Epstein A.; Machin J.; Tempest P.; Newell K. L.; Vidal R.; Garringer H. J.; Sahara N.; Higuchi M.; Ghetti B.; Jang M. K.; Scheres S. H. W.; Goedert M. Acta Neuropathol. 2021, 141, 697.
[9]
Falcon B.; Zhang W. J.; Murzin A. G.; Murshudov G.; Garringer H. J.; Vidal R.; Crowther R. A.; Ghetti B.; Scheres S. H. W.; Goedert M. Nature 2018, 561, 137.
[10]
Falcon B.; Zivanov J.; Zhang W. J.; Murzin A. G.; Garringer H. J.; Vidal R.; Crowther R. A.; Newell K. L.; Ghetti B.; Goedert M.; Scheres S. H. W. Nature 2019, 568, 420.
[11]
Zhang W. J.; Tarutani A.; Newell K. L.; Murzin A. G.; Matsubara T.; Falcon B.; Vidal R.; Garringer H. J.; Shi Y.; Ikeuchi T.; Murayama S.; Ghetti B.; Hasegawa M.; Goedert M.; Scheres S. H. W. Nature 2020, 580, 283.
[12]
Zhu K. F.; Yuan C.; Du Y. M.; Sun K. L.; Zhang X. K.; Vogel H.; Jia X. D.; Gao Y. Z.; Zhang Q. F.; Wang D. P.; Zhang H. W. Mil. Med. Res. 2023, 10.
[13]
Cameroni E.; Bowen J. E.; Rosen L. E.; Saliba C.; Zepeda S. K.; Culap K.; Pinto D.; VanBlargan L. A.; De Marco A.; di Iulio J.; Zatta F.; Kaiser H.; Noack J.; Farhat N.; Czudnochowski N.; Havenar-Daughton C.; Sprouse K. R.; Dillen J. R.; Powell A. E.; Chen A.; Maher C.; Yin L.; Sun D.; Soriaga L.; Bassi J.; Silacci-Fregni C.; Gustafsson C.; Franko N. M.; Logue J.; Iqbal N. T.; Mazzitelli I.; Geffner J.; Grifantini R.; Chu H.; Gori A.; Riva A.; Giannini O.; Ceschi A.; Ferrari P.; Cippa P. E.; Franzetti-Pellanda A.; Garzoni C.; Halfmann P. J.; Kawaoka Y.; Hebner C.; Purcell L. A.; Piccoli L.; Pizzuto M. S.; Walls A. C.; Diamond M. S.; Telenti A.; Virgin H. W.; Lanzavecchia A.; Snell G.; Veesler D.; Corti D. Nature 2022, 602, 664.
[14]
Li Y. Z.; Huang W.; Li Y. B.; Pei A.; Boyle D. T.; Cui Y. Joule 2018, 2, 2167.
[15]
Cheng D. Y.; Wynn T. A.; Wang X. F.; Wang S.; Zhang M. H.; Shimizu R.; Bai S.; Nguyen H.; Fang C. C.; Kim M. C.; Li W. K.; Lu B. Y.; Kim S. J.; Meng Y. S. Joule 2020, 4, 2484.
[16]
Liu Y. J.; Ju Z. J.; Zhang B. L.; Wang Y.; Nai J. W.; Liu T. F.; Tao X. Y. Acc. Chem. Res. 2021, 54, 2088.
[17]
Li Y. Z.; Wang K. C.; Zhou W. J.; Li Y. B.; Vila R.; Huang W.; Wang H. X.; Chen G. X.; Wu G. H.; Tsao Y. C.; Wang H. S.; Sinclair R.; Chiu W.; Cui Y. Matter 2019, 1, 428.
[18]
Wang F. B.; Gnewou O.; Solemanifar A.; Conticello V. P.; Egelman E. H. Chem. Rev. 2022, 122, 14055.
[19]
Schrinner M.; Polzer F.; Mei Y.; Lu Y.; Haupt B.; Ballauff M.; Goldel A.; Drechsler M.; Preussner J.; Glatzel U. Macromol. Chem. Phys. 2007, 208, 1542.
[20]
Lu Y.; Mei Y.; Schrinner M.; Ballauff M.; Moller M. W. J. Phys. Chem. C 2007, 111, 7676.
[21]
Bayfield O. W.; Klimuk E.; Winkler D. C.; Hesketh E. L.; Chechik M.; Cheng N. Q.; Dykeman E. C.; Minakhin L.; Ranson N. A.; Severinov K.; Steven A. C.; Antson A. A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 3556.
[22]
Hilhorst J.; Meester V.; Groeneveld E.; Dhont J. K. G.; Lekkerkerker H. N. W. J. Phys. Chem. B 2014, 118, 11816.
[23]
Li W. J.; Teng X. M.; Chen X. Y.; Liu L.; Xu L.; Zhang J.; Wang Y. Y.; Zhang Y.; Shi Z. B. Environ. Sci. Technol. 2021, 55, 16639.
[24]
Dai X. H.; Li Z. H.; Lai M.; Shu S.; Du Y. S.; Zhou Z. H.; Sun R. Nature 2017, 541, 112.
[25]
Mikula R. J.; Munoz V. A. Colloids Surf. A 2000, 174, 23.
[26]
Omarova M.; Swientoniewski L. T.; Tsengam I. K. M.; Blake D. A.; John V.; McCormick A.; Bothun G. D.; Raghavan S. R.; Bose A. ACS Sustainable Chem. Eng. 2019, 7, 14490.
[27]
Luo H.; Scriven L. E.; Francis L. F. J. Colloid Interface Sci. 2007, 316, 500.
[28]
Aston R.; Sewell K.; Klein T.; Lawrie G.; Grondahl L. Eur. Polym. J. 2016, 82, 1.
[29]
Liu N.; Gong Y. X.; Peng X. X.; Li S. L.; Zhang W. X. J. Hazard. Mater. 2022, 432, 128683.
[30]
Krysiak-Baltyn K.; Cavalida R.; Thwaites B.; Reeve P. J.; Scales P. J.; Van den Akker B.; Ong L.; Martin G. J. O.; Stickland A. D.; Gras S. L. J. Water Process Eng. 2019, 29, 100785.
[31]
Schertel A.; Snaidero N.; Han H. M.; Ruhwedel T.; Laue M.; Grabenbauer M.; Mobius W. J. Struct. Biol. 2013, 184, 355.
[32]
Lubelli B.; de Winter D. A. M.; Post J. A.; van Hees R. P. J.; Drury M. R. Appl. Clay Sci. 2013, 80, 358.
[33]
Houben L.; Weissman H.; Wolf S. G.; Rybtchinski B. Nature 2020, 579, 540.
[34]
Zachman M. J.; Tu Z. Y.; Choudhury S.; Archer L. A.; Kourkoutis L. F. Nature 2018, 560, 345.
[35]
Xu B. J.; Liu L. Protein Sci. 2020, 29, 872.
[36]
De Rosier D. J.; Klug A. Nature 1968, 217, 130.
[37]
Taylor K. A.; Glaeser R. M. Science 1974, 186, 1036.
[38]
Dubochet J.; Adrian M.; Chang J. J.; Homo J. C.; Lepault J.; Mcdowall A. W.; Schultz P. Q. Rev. Biophys. 1988, 21, 129.
[39]
Dubochet J. Methods Cell Biol. 2007, 79, 7.
[40]
Taylor K. A.; Glaeser R. M. J. Ultrastruct. Res. 1976, 55, 448.
[41]
Limmer D. T.; Chandler D. Proc. Natl. Acad. Sci. U. S. A. 2014, 111, 9413.
[42]
Dubochet J.; Mcdowall A. W. J. Microsc. 1981, 124, 3.
[43]
Dubochet J.; Mcdowall A. W.; Lepault J. Biol. Cell 1982, 45, 456.
[44]
Frank J.; Shimkin B.; Dowse H. Ultramicroscopy 1981, 6, 343.
[45]
Vanheel M.; Frank J. Ultramicroscopy 1981, 6, 187.
[46]
Vanheel M.; Keegstra W. Ultramicroscopy 1981, 7, 113.
[47]
Henderson R.; Baldwin J. M.; Ceska T. A.; Zemlin F.; Beckmann E.; Downing K. H. J. Mol. Biol. 1990, 213, 899.
[48]
Liao M. F.; Cao E. H.; Julius D.; Cheng Y. F. Nature 2013, 504, 107.
[49]
Merk A.; Bartesaghi A.; Banerjee S.; Falconieri V.; Rao P.; Davis M. I.; Pragani R.; Boxer M. B.; Earl L. A.; Milne J. L. S.; Subramaniam S. Cell 2016, 165, 1698.
[50]
Yip K. M.; Fischer N.; Paknia E.; Chari A.; Stark H. Nature 2020, 587, 157.
[51]
Sente A.; Nakane T.; Kotecha A.; Aricescu A. R.; Scheres S. H. W. Acta Crystallogr. A 2020, 76, 220.
[52]
Cui H.; Hodgdon T. K.; Kaler E. W.; Abezgauz L.; Danino D.; Lubovsky M.; Talmon Y.; Pochan D. J. Soft Matter 2007, 3, 945.
[53]
Rigort A.; Plitzko J. M. Arch. Biochem. Biophys. 2015, 581, 122.
[54]
Volkert C. A.; Minor A. M. MRS Bull. 2007, 32, 389.
[55]
Shen P. S. Anal. Bioanal. Chem. 2018, 410, 2053.
[56]
Rykaczewski K.; Landin T.; Walker M. L.; Scott J. H. J.; Varanasi K. K. ACS Nano 2012, 6, 9326.
[57]
Stewart P. L. Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2017, 9, 1417.
[58]
Hayles M. F.; De Winter D. A. M. J. Microsc. 2021, 281, 138.
[59]
Gong Y. X.; Gu T. H.; Ling L.; Qiu R. L.; Zhang W. X. J. Hazard. Mater. 2022, 436, 129192.
[60]
Thompson R. F.; Walker M.; Siebert C. A.; Muench S. P.; Ranson N. A. Methods 2016, 100, 3.
[61]
Milne J. L. S.; Borgnia M. J.; Bartesaghi A.; Tran E. E. H.; Earl L. A.; Schauder D. M.; Lengyel J.; Pierson J.; Patwardhan A.; Subramaniam S. FEBS J. 2013, 280, 28.
[62]
Zhong S.; Pochan D. J. Polym. Rev. 2010, 50, 287.
[63]
Newcomb C. J.; Moyer T. J.; Lee S. S.; Stupp S. I. Curr. Opin. Colloid Interface Sci. 2012, 17, 350.
[64]
Danino D.; Gupta R.; Satyavolu J.; Talmon Y. J. Colloid Interface Sci. 2002, 249, 180.
[65]
Unwin P. N. T.; Henderson R. J. Mol. Biol. 1975, 94, 425.
[66]
Sander B.; Golas M. M.; Stark H. J. Struct. Biol. 2003, 143, 219.
[67]
Joyeux L.; Penczek P. A. Ultramicroscopy 2002, 92, 33.
[68]
Nogales E. Nat. Methods 2016, 13, 24.
[69]
Sigworth F. J. J. Struct. Biol. 1998, 122, 328.
[70]
Scheres S. H. W.; Gao H. X.; Valle M.; Herman G. T.; Eggermont P. P. B.; Frank J.; Carazo J. M. Nat. Methods 2007, 4, 27.
[71]
Liao M.; Cao E.; Julius D.; Cheng Y. Curr. Opin. Struct. Biol. 2014, 27, 1.
[72]
Cheng Y. F. Cell 2015, 161, 450.
[73]
Pyle E.; Zanetti G. Biochem. J. 2021, 478, 1827.
[74]
Wagner J.; Schaffer M.; Fernandez-Busnadiego R. FEBS Lett. 2017, 591, 2520.
[75]
Comolli L. R.; Downing K. H. J. Struct. Biol. 2005, 152, 149.
[76]
Bammes B. E.; Jakana J.; Schmid M. F.; Chiu W. J. Struct. Biol. 2010, 169, 331.
[77]
Mcewen B. F.; Downing K. H.; Glaeser R. M. Ultramicroscopy 1995, 60, 357.
[78]
McMullan G.; Faruqi A. R.; Henderson R. Methods Enzymol. 2016, 579, 1.
[79]
McMullan G.; Chen S.; Henderson R.; Faruqi A. R. Ultramicroscopy 2009, 109, 1126.
[80]
Lucic V.; Forster F.; Baumeister W. Annu. Rev. Biochem. 2005, 74, 833.
[81]
Kramer M.; Rolf C.; Luebke A.; Afchine A.; Spelten N.; Costa A.; Meyer J.; Zoger M.; Smith J.; Herman R. L.; Buchholz B.; Ebert V.; Baumgardner D.; Borrmann S.; Klingebiel M.; Avallone L. Atmos. Chem. Phys. 2016, 16, 3463.
[82]
Magee N.; Boaggio K.; Staskiewicz S.; Lynn A.; Zhao X. Y.; Tusay N.; Schuh T.; Bandamede M.; Bancroft L.; Connelly D.; Hurler K.; Miner B.; Khoudary E. Atmos. Chem. Phys. 2021, 21, 7171.
[83]
Fiegel J.; Clarke R.; Edwards D. A. Drug Discov. Today 2006, 11, 51.
[84]
Yao M. S. J. Aerosol Sci. 2018, 119, 91.
[85]
Tellier R.; Li Y. G.; Cowling B. J.; Tang J. W. BMC Infect. Dis. 2019, 19, 101.
[86]
Moschovis P. P.; Yonker L. M.; Shah J.; Singh D.; Demokritou P.; Kinane T. B. Pediatr. Pulmonol. 2021, 56, 6.
[87]
Tellier R. J. R. Soc., Interface 2009, 6, 783.
[88]
Cowling B. J.; Ip D. K. M.; Fang V. J.; Suntarattiwong P.; Olsen S. J.; Levy J.; Uyeki T. M.; Leung G. M.; Peiris J. S. M.; Chotpitayasunondh T.; Nishiura H.; Simmerman J. M. Nat. Commun. 2013, 4, 1935.
[89]
Brankston G.; Gitterman L.; Hirji Z.; Lemieux C.; Gardam M. Lancet Infect. Dis. 2007, 7, 758.
[90]
Walls A. C.; Park Y. J.; Tortorici M. A.; Wall A.; McGuire A. T.; Veesler D. Cell 2020, 183, 1735.
[91]
Zhu Z. Y.; Liang A. X.; Haotian R. L.; Tang S. S.; Liu M.; Xie B. T.; Luo A. Q. Acta Chim. Sinica 2023, 81, 253. (in Chinese)
[91]
( 朱子煜, 梁阿新, 浩天瑞霖, 唐珊珊, 刘淼, 解炳腾, 罗爱芹, 化学学报, 2023, 81, 253.)
[92]
Wrapp D.; Wang N. S.; Corbett K. S.; Goldsmith J. A.; Hsieh C. L.; Abiona O.; Graham B. S.; McLellan J. S. Science 2020, 367, 1260.
[93]
Xu C.; Wang Y. X.; Liu C. X.; Zhang C.; Han W. Y.; Hong X. Y.; Wang Y. F.; Hong Q.; Wang S. T.; Zhao Q. Y.; Wang Y. L.; Yang Y.; Chen K. J.; Zheng W.; Kong L. L.; Wang F. F.; Zuo Q. Y.; Huang Z.; Cong Y. Sci. Adv. 2021, 7, 5575.
[94]
Ito S.; Gorb S. N. J. R. Soc., Interface 2019, 16, 0269.
[95]
Tsou C. H.; Cheng P. C.; Tseng C. M.; Yen H. J.; Fu Y. L.; You T. R.; Walden D. B. Plant Reprod. 2015, 28, 47.
[96]
Karolyi F.; Gorb S. N.; Krenn H. W. Arthropod-Plant Interact. 2009, 3, 1.
[97]
Trotsenko Y. A.; Murrell J. C. Adv. Appl. Microbiol. 2008, 63, 183.
[98]
Semrau J. D.; DiSpirito A. A.; Yoon S. FEMS Microbiol. Rev. 2010, 34, 496.
[99]
Wang V. C. C.; Maji S.; Chen P. R. Y.; Lee H. K.; Yu S. S. F.; Chan S. I. Chem. Rev. 2017, 117, 8574.
[100]
Chang W. H.; Lin H. H.; Tsai I. K.; Huang S. H.; Chung S. C.; Tu I. P.; Yu S. S. F.; Chan S. I. J. Am. Chem. Soc. 2021, 143, 9922.
[101]
Yang S. M.; Liu A. R.; Liu J.; Liu Z. L.; Zhang W. X. Acta Chim. Sinica 2022, 80, 1536. (in Chinese)
[101]
( 杨思明, 刘爱荣, 刘静, 刘钊丽, 张伟贤, 化学学报, 2022, 80, 1536.)
[102]
Hochella M. F.; Mogk D. W.; Ranville J.; Allen I. C.; Luther G. W.; Marr L. C.; McGrail B. P.; Murayama M.; Qafoku N. P.; Rosso K. M.; Sahai N.; Schroeder P. A.; Vikesland P.; Westerhoff P.; Yang Y. Science 2019, 363, 1414.
[103]
Tadesse L. F.; Ho C. S.; Chen D. H.; Arami H.; Banaei N.; Gambhir S. S.; Jeffrey S. S.; Saleh A. A. E.; Dionne J. Nano Lett. 2020, 20, 7655.
[104]
Yin L. P.; Zhang M.; Zhang Y. L.; Qiao F. L. Acta Oceanol. Sin. 2018, 37, 69.
[105]
Wise C. F.; Wise J. T. F.; Wise S. S.; Thompson W. D.; Wise J. P.; Wise J. P. Aquat. Toxicol. 2014, 152, 335.
[106]
DeLeo D. M.; Ruiz-Ramos D. V.; Baums I. B.; Cordes E. E. Deep-Sea Res. 2016, 129, 137.
[107]
Alexander F. J.; King C. K.; Reichelt-Brushett A. J.; Harrison P. L. Environ. Toxicol. Chem. 2017, 36, 1563.
[108]
Gong H. Y.; Bao M. T.; Pi G. L.; Li Y. M.; Wang A. Q.; Wang Z. N. ACS Sustainable Chem. Eng. 2016, 4, 169.
[109]
Tchounwou P. B.; Yedjou C. G.; Patlolla A. K.; Sutton, D. J. Exp. Suppl. 2012, 101, 133.
[110]
Ahmad F.; Ashraf N.; Zhou R. B.; Chen J. J.; Liu Y. L.; Zeng X. B.; Zhao F. Z.; Yin D. C. J. Hazard. Mater. 2019, 380, 120906.
[111]
Negre M.; Leone P.; Trichet J.; Defarge C.; Boero V.; Gennari M. Geoderma 2004, 121, 1.
文章导航

/