综述

单分子荧光成像研究单颗粒纳米催化机制

  • 王晓 ,
  • 王星文 ,
  • 肖乐辉
展开
  • a 南开大学 化学学院 天津 300071
    b 中南大学 化学化工学院 长沙 410083

王晓, 2017年本科毕业于南京师范大学, 2022年博士毕业于南开大学, 师从肖乐辉教授, 现任南开大学科研助理, 主要从事单分子荧光成像、单颗粒纳米催化方向的研究.

王星文, 南开大学在读硕士, 主要从事单分子荧光成像、荧光探针及色谱填料合成方向的研究.

肖乐辉, 现任中南大学特聘教授, 博士生导师, 国家自然科学基金优秀青年基金获得者, 主持多项国家自然科学基金面上课题, 在国际顶尖期刊发表SCI论文80余篇, 发现了等离激元热点诱导的快速晶格重排规律, 开创性提出了金属异质结模型用于光催化体系热载流子的高效传递, 近年来主要围绕分子识别、动态示踪以及单分子反应开展研究工作.

收稿日期: 2023-04-20

  网络出版日期: 2023-07-04

基金资助

项目受国家自然科学基金(22174079); 项目受国家自然科学基金(21974073)

Nanocatalytic Mechanisms Investigated by Single Molecule Fluorescence Imaging at the Single-Particle Level

  • Xiao Wang ,
  • Xingwen Wang ,
  • Lehui Xiao
Expand
  • a College of Chemistry, Nankai University, Tianjin 300071
    b College of Chemistry and Chemical Engineering, Central South University, Changsha 410083

Received date: 2023-04-20

  Online published: 2023-07-04

Supported by

National Natural Science Foundation of China(22174079); National Natural Science Foundation of China(21974073)

摘要

纳米颗粒通常具有优异的催化性能, 但由于其内在的异质性, 宏观水平的表征难以确定单个纳米颗粒可靠的构效关系和潜在的催化反应机制. 单分子荧光成像技术具有单分子灵敏度、高时空分辨率的优点, 可以在单颗粒水平实现反应产物的超灵敏检测, 因而在纳米催化领域得到了广泛应用. 本文综述了单分子荧光成像的发展以及该技术在揭示单颗粒纳米催化反应机制中的应用, 主要包括尺寸效应、晶面效应、表面缺陷、等离激元效应、双金属效应、活化能、纳米限域效应以及单颗粒催化通讯等方面. 最后总结和展望了单分子荧光成像技术在纳米催化研究中的挑战与发展方向.

本文引用格式

王晓 , 王星文 , 肖乐辉 . 单分子荧光成像研究单颗粒纳米催化机制[J]. 化学学报, 2023 , 81(8) : 1002 -1014 . DOI: 10.6023/A23040147

Abstract

With the ever-increasing demands for energy and declining reserves of fossil fuels, efficient use of fossil fuels and energy extraction from alternative raw materials are critical to the sustainable future of humanity. Catalysis is one of the key technologies capable of helping address this energy challenge. Nanocatalysts are an integral part of catalysis technology, and they can catalyze chemical transformation for petroleum processing and energy conversions, which are more efficient than their bulk materials. With the rapid development of nanoscience, new nanocatalysts and novel catalytic properties continue to emerge. Tremendous work has been done in characterizing the catalytic properties of nanoparticles at the ensemble level. However, due to heterogeneous properties of nanoparticles in size, morphology or surface composition, traditional ensemble methods can only provide averaged behavior of numerous nanoparticles. Therefore, it is difficult to determine the reliable structure-activity relationship for individual nanoparticles. In addition, owing to the surface structural reconstruction, the active sites of nanocatalysts are variable under catalysis. Revealing the dynamic evolution of active sites is helpful to understand the process and mechanism of catalytic reaction. Consequently, developing a direct approach to study the nanocatalysis at the single-particle level and in real-time with sufficient spatiotemporal resolution is highly demanding. Recently, due to the single-molecule sensitivity and high spatiotemporal resolution, single-molecule fluorescence imaging (SMFI) has been proved to be an effective tool for studying the heterogeneous nanocatalysts at the single-particle level. By adopting fluorogenic reactions and monitoring the fluorescence signal of a product, the reaction process on a single nanoparticle can be followed in real-time at single-turnover resolution under steady-state reaction kinetics. In this review, we discuss recent processes of SMFI in investigating nanocatalysis at the single-particle level. The discussion focuses on the development and application of SMFI in probing catalytic mechanisms, including the size effect, facet effect, surface defects, plasmonic effect, activation energy, bimetallic effect, nanoconfined effect and catalytic communication. Finally, challenges and prospects of the SMFI for investigating nanocatalysis are put forward.

参考文献

[1]
Tan L.; Wang F.; Zhang P.; Suzuki Y.; Wu Y.; Chen J.; Yang G.; Tsubaki N. Chem. Sci. 2020, 11, 4097.
[2]
Ma Z.; Wei L.; Zhou W.; Jia L.; Hou B.; Li D.; Zhao Y. RSC Adv. 2015, 5, 88287.
[3]
Liang C.; Lu Z.-A.; Wu J.; Chen M.-X.; Zhang Y.; Zhang B.; Gao G.-L.; Li S.; Xu P. ACS Appl. Mater. Interfaces 2020, 12, 54266.
[4]
Li X.; Liu G.; Xu D.; Hong X.; Tsang S. C. E. J. Mater. Chem. A 2019, 7, 23878.
[5]
Cortés E.; Besteiro L. V.; Alabastri A.; Baldi A.; Tagliabue G.; Demetriadou A.; Narang P. ACS Nano 2020, 14, 16202.
[6]
Zhang H.; Duan S.; Radjenovic P. M.; Tian Z.-Q.; Li J.-F. Acc. Chem. Res. 2020, 53, 729.
[7]
Yang J.; Zeng D.; Zhang Q.; Cui R.; Hassan M.; Dong L.; Li J.; He Y. Appl. Catal. B 2020, 279, 119363.
[8]
Som I.; Roy M.; Saha R. ChemCatChem 2020, 12, 3409.
[9]
Su H.-S.; Zhang X.-G.; Sun J.-J.; Jin X.; Wu D.-Y.; Lian X.-B.; Zhong J.-H.; Ren B. Angew. Chem. Int. Ed. 2018, 57, 13177.
[10]
Wu J.; Wang X.; Wang Q.; Lou Z.; Li S.; Zhu Y.; Qin L.; Wei H. Chem. Soc. Rev. 2019, 48, 1004.
[11]
Maurer F.; Jelic J.; Wang J.; G?nzler A.; Dolcet P.; W?ll C.; Wang Y.; Studt F.; Casapu M.; Grunwaldt J.-D. Nat. Catal. 2020, 3, 824.
[12]
Park J. Y.; Baker L. R.; Somorjai G. A. Chem. Rev. 2015, 115, 2781.
[13]
Yang J.-L.; He Y.-L.; Ren H.; Zhong H.-L.; Lin J.-S.; Yang W.-M.; Li M.-D.; Yang Z.-L.; Zhang H.; Tian Z.-Q.; Li J.-F. ACS Catal. 2021, 11, 5047.
[14]
Wei W.; Yuan T.; Jiang W.; Gao J.; Chen H. Y.; Wang W. J. Am. Chem. Soc. 2020, 142, 14307.
[15]
Arnob M. M. P.; Artur C.; Misbah I.; Mubeen S.; Shih W.-C. ACS Appl. Mater. Interfaces 2019, 11, 13499.
[16]
Xu Y.-F.; Duchesne P. N.; Wang L.; Tavasoli A.; Ali F. M.; Xia M.; Liao J.-F.; Kuang D.-B.; Ozin G. A. Nat. Commun. 2020, 11, 5149.
[17]
Guo J.; Zhang Y.; Shi L.; Zhu Y.; Mideksa M. F.; Hou K.; Zhao W.; Wang D.; Zhao M.; Zhang X.; Lv J.; Zhang J.; Wang X.; Tang Z. J. Am. Chem. Soc. 2017, 139, 17964.
[18]
Gao M.; Li H.; Liu W.; Xu Z.; Peng S.; Yang M.; Ye M.; Liu Z. Nat. Commun. 2020, 11, 3641.
[19]
Xiao Y.; Hong J.; Wang X.; Chen T.; Hyeon T.; Xu W. J. Am. Chem. Soc. 2020, 142, 13201.
[20]
Wu S.; Madridejos J. M. L.; Lee J. K.; Lu Y.; Xu R.; Zhang Z. Nanoscale 2023, 15, 3449.
[21]
Jiang Y.; Su H.; Wei W.; Wang Y.; Chen H. Y.; Wang W. Proc. Natl. Acad. Sci. USA 2019, 116, 6630.
[22]
Liu Y.; Zhang K.; Tian X.; Zhou L.; Liu J.; Liu B. ACS Appl. Mater. Interfaces 2021, 13, 7680.
[23]
Zhang Y.; Chen T.; Alia S.; Pivovar B. S.; Xu W. Angew. Chem. Int. Ed. 2016, 55, 3086.
[24]
Wang L. J.; Lv M. M.; Hu J. P.; Liu M.; Zhang C. Y. Chem. Commun. 2023, 59, 1181.
[25]
Kikuchi K.; Adair L. D.; Lin J.; New E. J.; Kaur A. Angew. Chem. Int. Ed. 2023, 62, e202204745.
[26]
Wang D.; Shi F.; Jose J.; Hu Y.; Zhang C.; Zhu A.; Grzeschik R.; Schlu?cker S.; Xie W. J. Am. Chem. Soc. 2022, 144, 5003.
[27]
Wang W. Chem. Soc. Rev. 2018, 47, 2485.
[28]
Shen M.; Ding T.; Tan C.; Rackers W. H.; Zhang D.; Lew M. D.; Sadtler B. Nano Lett. 2022, 22, 4694.
[29]
Hendriks F. C.; Mohammadian S.; Ristanovic Z.; Kalirai S.; Meirer F.; Vogt E. T. C.; Bruijnincx P. C. A.; Gerritsen H. C.; Weckhuysen B. M. Angew. Chem. Int. Ed. 2018, 57, 257.
[30]
Ye Z.; Wei L.; Xiao L.; Wang J. Chem. Sci. 2019, 10, 5793.
[31]
Xiao Y.; Xu W. Chinese J. Chem. 2021, 39, 1459.
[32]
Li J.-Y.; Zhang D.-Y.; Mao S.; Wang H. Chinese J. Chem. 2023, 41, 679.
[33]
Roeffaers M. B. J.; De Cremer G.; Libeert J.; Ameloot R.; Dedecker P.; Bons A. J.; Buckins M.; Martens J. A.; Sels B. F.; De Vos D. E.; Hofkens J. Angew. Chem. Int. Ed. 2009, 48, 9285.
[34]
Zhou X.; Andoy N. M.; Liu G.; Choudhary E.; Han K.-S.; Shen H.; Chen P. Nat. Nanotechnol. 2012, 7, 237.
[35]
Chattopadhyay S.; Biteen J. S. Anal. Chem. 2021, 93, 430.
[36]
Hamans R. F.; Parente M.; Baldi A. Nano Lett. 2021, 21, 2149.
[37]
Wang W.; Gu J.; He T.; Shen Y.; Xi S.; Tian L.; Li F.; Li H.; Yan L.; Zhou X. Nano Res. 2015, 8, 441.
[38]
Zhang T.; Li S.; Du Y.; He T.; Shen Y.; Bai C.; Huang Y.; Zhou X. J. Phys. Chem. Lett. 2018, 9, 5630.
[39]
Chen T.; Dong B.; Chen K.; Zhao F.; Cheng X.; Ma C.; Lee S.; Zhang P.; Kang S. H.; Ha J. W.; Xu W.; Fang N. Chem. Rev. 2017, 117, 7510.
[40]
Willets K. A.; Wilson A. J.; Sundaresan V.; Joshi P. B. Chem. Rev. 2017, 117, 7538.
[41]
Dong B.; Mansour N.; Huang T. X.; Huang W.; Fang N. Chem. Soc. Rev. 2021, 50, 6483.
[42]
Chen M.; Ye Z.; Wei L.; Yuan J.; Xiao L. J. Am. Chem. Soc. 2022, 144, 12842.
[43]
Qu X.; Zhao B.; Zhang W.; Zou J.; Wang Z.; Zhang Y.; Niu L. J. Phys. Chem. Lett. 2022, 13, 830.
[44]
Wang X.; Ye Z.; Hua J.; Wei L.; Lin S.; Xiao L. CCS Chem. 2022, 4, 1074.
[45]
Su X.-D.; Jin J.-S.; Xie X. S. Acta Phys. -Chim. Sin. 2010, 26, 1976. (in Chinese)
[45]
( 苏晓东, 金坚石, 谢晓亮, 物理化学学报, 2010, 26, 1976.)
[46]
Lu H. P.; Xun L.; Xie X. S. Science 1998, 282, 1877.
[47]
Roeffaers M. B. J.; Sels B. F.; Uji-i H.; Schryver F. D.; Jacobs P. A.; De Vos D. E.; Hofkens J. Nature 2006, 439, 572.
[48]
Naito K.; Tachikawa T.; Fujitsuka M.; Majima T. J. Phys. Chem. B 2005, 109, 23138.
[49]
Tachikawa T.; Wang N.; Yamashita S.; Cui S.-C.; Majima T. Angew. Chem. Int. Ed. 2010, 49, 8593.
[50]
Tachikawa T.; Yamashita S.; Majima T. J. Am. Chem. Soc. 2011, 133, 7197.
[51]
Naito K.; Tachikawa T.; Fujitsuka M.; Majima T. J. Am. Chem. Soc. 2009, 131, 934.
[52]
Wang N.; Tachikawa T.; Majima T. Chem. Sci. 2011, 2, 891.
[53]
Mao X.; Liu C.; Hesari M.; Zou N.; Chen P. Nat. Chem. 2019, 11, 687.
[54]
Xu W.; Kong J. S.; Chen P. Phys. Chem. Chem. Phys. 2009, 11, 2767.
[55]
Xu W.; Kong J. S.; Yeh Y.-T. E.; Chen P. Nat. Mater. 2008, 7, 992.
[56]
Cao J.; Zhang D.; Xu W. Nano Res. 2022, 15, 10316.
[57]
Xiao Y.; Xu W. Chem 2023, 9, 16.
[58]
Liu X.; Ge X.; Cao J.; Xiao Y.; Wang Y.; Zhang W.; Song P.; Xu W. Proc. Natl. Acad. Sci. USA 2022, 119, e2114639119.
[59]
Chen Y.; Li Z.; Huang X.; Lu G.; Huang W. Nano Today 2020, 34, 100957.
[60]
Li Z.; Devasenathipathy R.; Wang J.; Yu L.; Liang Y.; Sheng H.; Zhu Y.; Li H.; Uji-i H.; Huang X.; Lu G. Nano Res. 2023, 16, 8817.
[61]
Sheng H.; Wang J.; Huang J.; Li Z.; Ren G.; Zhang L.; Yu L.; Zhao M.; Li X.; Li G.; Wang N.; Shen C.; Lu G. Nat. Commun. 2023, 14, 1528.
[62]
Lu Z.; Zhai X.; Yi R.; Li Z.; Zhang R.; Wei Q.; Xing G.; Lu G.; Huang W. J. Phys. Chem. C 2020, 124, 7914.
[63]
Ma Y.; Wang X.; Liu H.; Wei L.; Xiao L. Anal. Bioanal. Chem. 2019, 411, 4445.
[64]
Webb D. J.; Brown C. M. Methods Mol. Biol. 2012, 931, 29.
[65]
Sambur J. B.; Chen P. Annu. Rev. Phys. Chem. 2014, 65, 395.
[66]
Chen P.; Xu W.; Zhou X.; Panda D.; Kalininskiy A. Chem. Phys. Lett. 2009, 470, 151.
[67]
Andoy N. M.; Zhou X.; Choudhary E.; Shen H.; Liu G.; Chen P. J. Am. Chem. Soc. 2013, 135, 1845.
[68]
Wang L.; Frei M. S.; Salim A.; Johnsson K. J. Am. Chem. Soc. 2019, 141, 2770.
[69]
Godin A. G.; Setaro A.; Gandil M.; Haag R.; Adeli M.; Reich S.; Cognet L. Sci. Adv. 2019, 5, eaax1166.
[70]
Wang L.; Qian Y. Chin. J. Org. Chem. 2020, 40, 1246. (in Chinese)
[70]
( 王凌锋, 钱鹰, 有机化学, 2020, 40, 1246.)
[71]
Liu B.-K.; Teng K.-X.; Niu L.-Y.; Yang Q.-Z. Chin. J. Org. Chem. 2022, 42, 1265. (in Chinese)
[71]
( 刘斌凯, 滕坤旭, 牛丽亚, 杨清正, 有机化学, 2022, 42, 1265.)
[72]
Han K. S.; Liu G.; Zhou X.; Medina R. E.; Chen P. Nano Lett. 2012, 12, 1253.
[73]
Zhou X.; Choudhary E.; Andoy N. M.; Zou N.; Chen P. ACS Catal. 2013, 3, 1448.
[74]
Chen T.; Chen S.; Song P.; Zhang Y.; Su H.; Xu W.; Zeng J. ACS Catal. 2017, 7, 2967.
[75]
Shen M.; Ding T.; Hartman S. T.; Wang F.; Krucylak C.; Wang Z.; Tan C.; Yin B.; Mishra R.; Lew M. D.; Sadtler B. ACS Catal. 2020, 10, 2088.
[76]
De Cremer G.; Roeffaers M. B. J.; Bartholomeeusen E.; Lin K.; Dedecker P.; Pescarmona P. P.; Jacobs P. A.; De Vos D. E.; Hofkens J.; Sels B. F. Angew. Chem. Int. Ed. 2010, 49, 908.
[77]
Tachikawa T.; Majima T. Langmuir 2012, 28, 8933.
[78]
Tachikawa T.; Yonezawa T.; Majima T. ACS Nano 2013, 7, 263.
[79]
Wen Z.; Zhang S.; Liu Z.; Zhang Z.; Qiao Z.; Liu K.; Gao C. Sci. China Mater. 2023, 66, 1417.
[80]
Cao S.; Tao F. F.; Tang Y.; Li Y.; Yu J. Chem. Soc. Rev. 2016, 45, 4747.
[81]
Wang H.; Gu X.-K.; Zheng X.; Pan H.; Zhu J.; Chen S.; Cao L.; Li W.-X.; Lu J. Sci. Adv. 2019, 5, eaat6413.
[82]
Calle-Vallejo F.; Tymoczko J.; Colic V.; Vu Q. H.; Pohl M. D.; Morgenstern K.; Loffreda D.; Sautet P.; Schuhmann W.; Bandarenka A. S. Science 2015, 350, 185.
[83]
Mukherjee S.; Libisch F.; Large N.; Neumann O.; Brown L. V.; Cheng J.; Lassiter J. B.; Carter E. A.; Nordlander P.; Halas N. J. Nano Lett. 2013, 13, 240.
[84]
Liyanage T.; Nagaraju M.; Johnson M.; Muhoberac B. B.; Sardar R. Nano Lett. 2020, 20, 192.
[85]
Zhou X.; Xu W.; Liu G.; Panda D.; Chen P. J. Am. Chem. Soc. 2010, 132, 138.
[86]
Chen T.; Zhang Y.; Xu W. Phys. Chem. Chem. Phys. 2016, 18, 22494.
[87]
Zhang Y.; Song P.; Chen T.; Liu X.; Chen T.; Wu Z.; Wang Y.; Xie J.; Xu W. Proc. Natl. Acad. Sci. USA 2018, 115, 10588.
[88]
Lang X.; You T.; Yin P.; Tan E.; Zhang Y.; Huang Y.; Zhu H.; Ren B.; Guo L. Phys. Chem. Chem. Phys. 2013, 15, 19337.
[89]
Yang H. G.; Sun C. H.; Qiao S. Z.; Zou J.; Liu G.; Smith S. C.; Cheng H. M.; Lu G. Q. Nature 2008, 453, 638.
[90]
Jiang L.; Liu K.; Hung S. F.; Zhou L.; Qin R.; Zhang Q.; Liu P.; Gu L.; Chen H. M.; Fu G.; Zheng N. Nat. Nanotechnol. 2020, 15, 848.
[91]
Kim U.; Lee S.; Koo D.; Choi Y.; Kim H.; Son E.; Baik J. M.; Han Y.-K.; Park H. ACS Energy Lett. 2023, 8, 1575.
[92]
Nilsson Z.; Van Erdewyk M.; Wang L.; Sambur J. B. ACS Energy Lett. 2020, 5, 1474.
[93]
Vogt C.; Weckhuysen B. M. Nat. Rev. Chem. 2022, 6, 89.
[94]
Zhang Z.; Ge C.; Chen Y.; Wu Q.; Yang L.; Wang X.; Hu Z. Acta Chim. Sinica 2019, 77, 60. (in Chinese)
[94]
( 张志琦, 葛承宣, 陈玉刚, 吴强, 杨立军, 王喜章, 胡征, 化学学报, 2019, 77, 60.)
[95]
Ropp A.; Carenco S. ChemCatChem 2023, 15, e202300400.
[96]
Zhu M. J.; Pan J. B.; Wu Z. Q.; Gao X. Y.; Zhao W.; Xia X. H.; Xu J. J.; Chen H. Y. Angew. Chem. Int. Ed. 2018, 57, 4010.
[97]
Huang T.-X.; Dong B.; Filbrun S. L.; Okmi A. A.; Cheng X.; Yang M.; Mansour N.; Lei S.; Fang N. Sci. Adv. 2021, 7, eabj4452.
[98]
Xia C.; He W.; Yang X. F.; Gao P. F.; Zhen S. J.; Li Y. F.; Huang C. Z. Anal. Chem. 2022, 94, 13440.
[99]
Chen B. B.; Liu M. L.; Zou H. Y.; Liu Y.; Li Y. F.; Swihart M. T.; Huang C. Z. Angew. Chem. Int. Ed. 2022, 61, e202210313.
[100]
Brongersma M. L.; Halas N. J.; Nordlander P. Nat. Nanotechnol. 2015, 10, 25.
[101]
Lee S. Y.; Tsalu P. V.; Kim G. W.; Seo M. J.; Hong J. W.; Ha J. W. Nano Lett. 2019, 19, 2568.
[102]
Rej S.; Mascaretti L.; Santiago E. Y.; Tomanec O.; Kment ?.; Wang Z.; Zbo?il R.; Fornasiero P.; Govorov A. O.; Naldoni A. ACS Catal. 2020, 10, 5261.
[103]
Seemala B.; Therrien A. J.; Lou M.; Li K.; Finzel J. P.; Qi J.; Nordlander P.; Christopher P. ACS Energy Lett. 2019, 4, 1803.
[104]
Li C.; Wang P.; Tian Y.; Xu X.; Hou H.; Wang M.; Qi G.; Jin Y. ACS Catal. 2017, 7, 5391.
[105]
Liu T.; Besteiro L. V.; Liedl T.; Correa-Duarte M. A.; Wang Z.; Govorov A. O. Nano Lett. 2019, 19, 1395.
[106]
Mondal I.; Lee H.; Kim H.; Park J. Y. Adv. Funct. Mater. 2019, 30, 1908239.
[107]
Liu X.; Chen T.; Xu W. Phys. Chem. Chem. Phys. 2019, 21, 21806.
[108]
Yang W.; Liu Y.; McBride J. R.; Lian T. Nano Lett. 2021, 21, 453.
[109]
Kamarudheen R.; Aalbers G. J. W.; Hamans R. F.; Kamp L. P. J.; Baldi A. ACS Energy Lett. 2020, 5, 2605.
[110]
Linic S.; Chavez S.; Elias R. Nat. Mater. 2021, 20, 916.
[111]
Lu E.; Tao J.; Yang C.; Hou Y.; Zhang J.; Wang X.; Fu X. Acta Phys. -Chim. Sin. 2023, 39, 2211029. (in Chinese)
[111]
( 卢尔君, 陶俊乾, 阳灿, 侯乙东, 张金水, 王心晨, 付贤智, 物理化学学报, 2023, 39, 2211029.)
[112]
Wang Y.; Zhao Y.; Zhao Z.; Lan X.; Xu J.; Xu W.; Duan Z. Acta Chim. Sinica 2019, 77, 661. (in Chinese)
[112]
( 王永胜, 赵云鹭, 赵珍珍, 兰小林, 徐金霞, 徐伟祥, 段正康, 化学学报, 2019, 77, 661.)
[113]
Sambur J. B.; Chen T. Y.; Choudhary E.; Chen G.; Nissen E. J.; Thomas E. M.; Zou N.; Chen P. Nature 2016, 530, 77.
[114]
Wang Y.; Zhang S.; Ge Y.; Wang C.; Hu J.; Liu H. Acta Phys.-Chim. Sin. 2020, 36, 1905083. (in Chinese)
[114]
( 王艺蒙, 张申平, 葛宇, 王臣辉, 胡军, 刘洪来, 物理化学学报, 2020, 36, 1905083.)
[115]
Wu Z.; Shi Y.; Li C.; Niu D.; Chu Q.; Xiong W.; Li X. Acta Chim. Sinica 2019, 77, 758. (in Chinese)
[115]
( 武卓敏, 石勇, 李春艳, 牛丹阳, 楚奇, 熊巍, 李新勇, 化学学报, 2019, 77, 758.)
[116]
Yan T.; Liu Y.; Shen Y. Chin. J. Org. Chem. 2018, 38, 2491. (in Chinese)
[116]
( 颜廷斌, 刘跃辉, 沈悦海, 有机化学, 2018, 38, 2491.)
[117]
Wang Y.; Luo S. Chin. J. Org. Chem. 2020, 40, 2161. (in Chinese)
[117]
( 王娅宁, 罗三中, 有机化学, 2020, 40, 2161.)
[118]
Zhong J.-H.; Jin X.; Meng L.; Wang X.; Su H.-S.; Yang Z.-L.; Williams C. T.; Ren B. Nat. Nanotechnol. 2017, 12, 132.
[119]
Chen G.; Zou N.; Chen B.; Sambur J. B.; Choudhary E.; Chen P. ACS Cent. Sci. 2017, 3, 1189.
[120]
Chen T.; Tong F.; Enderlein J.; Zheng Z. Nano Lett. 2020, 20, 3326.
[121]
Zegeye T. A.; Chen W.-T.; Hsu C.-C.; Valinton J. A. A.; Chen C.-H. ACS Energy Lett. 2022, 7, 2236.
[122]
Zuo Y.; Liu Y.; Li J.; Du R.; Han X.; Zhang T.; Arbiol J.; Jiménez Divins N.; Llorca Piqué J.; Guijarro N.; Sivula K.; Cabot Codina A. Chem. Mater. 2019, 31, 7732.
[123]
Chen T.; Zhang Y.; Xu W. J. Am. Chem. Soc. 2016, 138, 12414.
[124]
Liu X.; Chen T.; Jain P. K.; Xu W. J. Phys. Chem. B 2019, 123, 6253.
[125]
Li W.; Miao J.; Peng T.; Lv H.; Wang J.-G.; Li K.; Zhu Y.; Li D. Nano Lett. 2020, 20, 2507.
[126]
Li H.; Xiao J.; Fu Q.; Bao X. Proc. Natl. Acad. Sci. USA 2017, 114, 5930.
[127]
Dusselier M.; Davis M. E. Chem. Rev. 2018, 118, 5265.
[128]
Liu H.; Yu H.; Xiong C.; Zhou S. RSC Adv. 2015, 5, 20238.
[129]
Xiao J.; Pan X.; Guo S.; Ren P.; Bao X. J. Am. Chem. Soc. 2015, 137, 477.
[130]
Antil N.; Kumar A.; Akhtar N.; Newar R.; Begum W.; Manna K. Inorg. Chem. 2021, 60, 9029.
[131]
Higgins D. A.; Park S. C.; Tran-Ba K.-H.; Ito T. Annu. Rev. Anal. Chem. 2015, 8, 193.
[132]
Sun Z.; Wang Y.; Zhang L.; Wu H.; Jin Y.; Li Y.; Shi Y.; Zhu T.; Mao H.; Liu J.; Xiao C.; Ding S. Adv. Funct. Mater. 2020, 30, 1910482.
[133]
Dong B.; Pei Y.; Zhao F.; Goh T. W.; Qi Z.; Xiao C.; Chen K.; Huang W.; Fang N. Nat. Catal. 2018, 1, 135.
[134]
Dong B.; Pei Y.; Mansour N.; Lu X.; Yang K.; Huang W.; Fang N. Nat. Commun. 2019, 10, 4815.
[135]
Zhao H.; Sen S.; Udayabhaskararao T.; Sawczyk M.; Kucanda K.; Manna D.; Kundu P. K.; Lee J. W.; Kral P.; Klajn R. Nat. Nanotechnol. 2016, 11, 82.
[136]
Dong B.; Mansour N.; Pei Y.; Wang Z.; Huang T.; Filbrun S. L.; Chen M.; Cheng X.; Pruski M.; Huang W.; Fang N. J. Am. Chem. Soc. 2020, 142, 13305.
[137]
Ye R.; Mao X.; Sun X.; Chen P. ACS Catal. 2019, 9, 1985.
[138]
Xu W.; Kong J. S.; Chen P. J. Phys. Chem. C 2009, 113, 2393.
[139]
Xu Y.; Gao Y.; Su Y.; Sun L.; Xing F.; Fan C.; Li D. J. Phys. Chem. Lett. 2018, 9, 6786.
[140]
Zou N.; Zhou X.; Chen G.; Andoy N. M.; Jung W.; Liu G.; Chen P. Nat. Chem. 2018, 10, 607.
文章导航

/