基于H型芴基小分子的双极性有机场效应晶体管存储器
收稿日期: 2023-06-02
网络出版日期: 2023-07-28
基金资助
国家重点研发计划青年项目(2021YFA0717900); 国家自然科学基金(22275098); 国家自然科学基金(22071112); 国家留学基金(201908320064); 南京工业职业技术大学(YK21-02-07)
Ambipolar Organic Field Effect Transistor Memory Based on H-Type Fluorene-Based Small Molecule
Received date: 2023-06-02
Online published: 2023-07-28
Supported by
National Key R&D Program Youth Project(2021YFA0717900); National Natural Science Foundation of China(22275098); National Natural Science Foundation of China(22071112); State Scholarship Fund(201908320064); Nanjing Vocational University of Industry Technology(YK21-02-07)
从空间位阻角度出发, 设计并合成了H型芴基小分子材料3Ph-TrH, 并通过溶液加工方法制备了将其作为电荷捕获层的浮栅型有机场效应晶体管(OFET)存储器. 结果表明, 该器件的空穴和电子存储窗口分别为31.2和11.6 V, 实现了基于单个小分子材料的双极性电荷存储. 为了提高器件的稳定性, 进一步制备了基于3Ph-TrH与聚苯乙烯(PS)掺杂薄膜的浮栅型OFET存储器. 测试结果显示, 该器件比基于3Ph-TrH作为单组分电荷捕获层的器件具有更高的稳定性和耐受性, 在10000 s的维持时间测试后, 该器件的电流开关比还能维持在1.1×103. 该工作为制备新型双极性电荷存储的OFET存储器提供了一条思路.
关键词: 空间位阻; 芴基小分子材料; 电荷捕获层; 双极性电荷存储; 浮栅型OFET存储器
刘玉玉 , 陈捷锋 , 邵振 , 魏颖 , 凌海峰 , 解令海 . 基于H型芴基小分子的双极性有机场效应晶体管存储器[J]. 化学学报, 2023 , 81(11) : 1508 -1514 . DOI: 10.6023/A23060267
A small organic molecule 3Ph-TrH with a rigid structure was designed with π-bridge thienyl and fluorenyl groups as hole trapping sites and the fluorenyl and phenyl units as electron trapping sites according to steric hindrance. Then, the floating gate type organic field-effect transistor (OFET) memories based on this small organic molecule through solution processing were fabricated. The experimental results show that there is a hole storage window of 31.2 V and an electron storage window of 11.6 V in this device, exhibiting ambipolar charge storage based on a single small molecule material. To improve the stability of the device, a floating-gate OFET memory based on 3Ph-TrH with polystyrene (PS)-doped film was further prepared. The test results show that the device is equipped with better device stability and tolerance than those based on 3Ph-TrH as a single-component charge trapping layer. After 10000 s of retention times test, ON/OFF current ratio of the device can still be maintained at 1.1×103, only reduced by an order of magnitude. This work can provide an idea for the preparation of a new type of OFET memory with ambipolar storage.
[1] | Myny K. Nat. Electron. 2018, 1, 30. |
[2] | Sekitani T.; Yokota T.; Zschieschang U.; Klauk H.; Bauer S.; Takeuchi K.; Takamiya M.; Sakurai T.; Someya T. Science 2009, 326, 1516. |
[3] | Yu Y.; Ma Q.-H.; Ling H.-F.; Li W.; Ju R.-L.; Bian L.-Y.; Shi N.-N.; Qian Y.; Yi M.-D.; Xie L.-H.; Huang W. Adv. Funct. Mater. 2019, 29, 1904602. |
[4] | Horowitz G. Adv. Mater. 1998, 10, 365. |
[5] | Wu F.-M.; Liu Y.-X.; Zhang J.; Duan S.-M.; Ji D.-Y.; Yang H. Small Methods 2021, 5, 2100676. |
[6] | He W.-X.; He L.-H.; Chen H.-P.; Zhang G.-C. Chin. J. Lumin. 2020, 41, 95. (in Chinese) |
[6] | ( 何伟欣, 何立铧, 陈惠鹏, 张国成, 发光学报, 2020, 41, 95.) |
[7] | Yang T.-Z.; Wu Q.; Dai F.-H.; Huang K.-R.; Xu H.-H.; Liu C.-N.; Chen C.-D.; Hu S.-J.; Liang X.-C.; Liu X.-Y.; Noh Y.-Y.; Liu C. Adv. Funct. Mater. 2020, 30, 1903889. |
[8] | Zhu Z.-H.; Guo Y.-L.; Liu Y.-Q. Mater. Chem. Front. 2020, 4, 2845. |
[9] | Bian Y.-S.; Liu K.; Guo Y.-L.; Liu Y.-Q. Acta Chim. Sinica 2020, 78, 848. (in Chinese) |
[9] | ( 边洋爽, 刘凯, 郭云龙, 刘云圻, 化学学报, 2020, 78, 848.) |
[10] | Hou B.; Li J.; Xin H.-S.; Yang X.-D.; Gao H.-L.; Peng P.-Z.; Gao X.-K. Acta Chim. Sinica 2020, 78, 788. (in Chinese) |
[10] | ( 侯斌, 李晶, 辛涵申, 杨笑迪, 高洪磊, 彭培珍, 高希珂, 化学学报, 2020, 78, 788.) |
[11] | Jeon S.; Sun C.; Yu S.-H.; Kwon S. K.; Chung D.-S.; Jeong Y. J.; Kim Y. H. ACS Appl. Mater. Interfaces 2020, 12, 2743. |
[12] | Mondal S.; Venkataraman V. Appl. Phys. Lett. 2019, 114, 173502. |
[13] | Mutkins K.; Gui K.; Aljada M.; Schwenn P. E.; Namdas E. B.; Burn P. L.; Meredith P. Appl. Phys. Lett. 2011, 98, 75. |
[14] | Bilgi?li A. T.; Yara??r M. N.; Kandaz M.; Ilik C.; Demir A.; Ba?c? S. Synth. Met. 2015, 206, 33. |
[15] | Ren Y.; Yang X.-Y.; Zhou L.; Mao J.-Y.; Han S.-T.; Zhou Y. Adv. Funct. Mater. 2019, 29, 1902105. |
[16] | Yu Y.; Wang L.; Lin D.-Q.; Rana S.-M.; Mali K.-S.; Ling H.-F.; Xie L.-H.; Feyter S.-D.; Liu J.-Z. Angew. Chem., Int. Ed. 2023, 62, e202303335. |
[17] | Zhang H.-H.; Tang X.-H.; Zhao D.-K.; Zheng N.; Huang L.-B.; Sun T.-L.; Gu C.; Ma Y.-G. Energy Storage Mater. 2020, 29, 281. |
[18] | Yu Y.; Bian L.-Y.; Chen J.-G.; Ma Q.-H.; Li Y.-X.; Ling H.-F.; Feng Q.-Y.; Xie L.-H.; Yi M.-D.; Huang W. Adv. Sci. 2018, 5, 1800747. |
[19] | Zhang J.; Xie M.-C.; Xin Y.; Han C.-M.; Xie L.-H.; Yi M.-D.; Xu H. Angew. Chem., Int. Ed. 2021, 60, 24894. |
[20] | Xie L.-H.; Ling Q.-D.; Hou X.-Y.; Huang W. J. Am. Chem. Soc. 2008, 130, 2120. |
[21] | Yu W.-L.; Pei J.; Huang W.; Heeger A. J. Adv. Mater. 2000, 12, 828. |
[22] | Hung M.-C.; Liao J.-L.; Chen S.-A.; Chen S.-H.; Su A.-C. J. Am. Chem. Soc. 2005, 127, 14576. |
[23] | Xie L.-H.; Hou X.-Y.; Tang C.; Hua Y.-R.; Wang R.-J.; Chen R.-F.; Fan Q.-L.; Wang L.-H.; Wei W.; Peng B.; Huang W. Org. Lett. 2006, 8, 1363. |
[24] | Xie L.-H.; Yin C.-R.; Lai W.-Y.; Fan Q.-L.; Huang W. Prog. Polym. Sci. 2012, 37, 1192. |
[25] | Qian Y.; Wei Q.; Gonzalo D.-P.; Mróz M.-M.; Lüer L.; Casado S.; Juan C.-G.; Zhang Q.; Xie L.-H.; Xia R.-D.; Huang W. Adv. Mater. 2014, 26, 2937. |
[26] | Guo Y.-L.; Di C.-A.; Ye S.-H.; Sun X.-N.; Zheng J.; Wen Y.-G.; Wu W.-P.; Yu G.; Liu Y.-Q. Adv. Mater. 2009, 21, 1954. |
[27] | Zhang P.; Jacques E.; Pichon L.; Bonnaud O. Thin Solid Films 2022, 759, 139458. |
[28] | Yao C.-D.; Wu G.-C.; Huang M.-Q.; Wang W.-Q.; Zhang C.; Wu J.-X.; Liu H.-W.; Zheng B.-Y.; Yi J.-L.; Zhu C.-G.; Tang Z.-L.; Wang Y.-Z.; Huang M.; Huang L.-Y.; Li Z.-W.; Xiang L.; Li D.; Li S.-M.; Pan A.-L. ACS Appl. Mater. Interfaces 2023, 15, 23573. |
[29] | Li Y.-S.; Tao R.-Q.; He W.; Chang C.; Zou Z.-M.; Zhang Y.; Wang D.; Wang J.-L.; Fan Z.; Zhou G.-F.; Lu X.-B.; Liu J.-M. J. Appl. Phys. 2021, 129, 074903. |
[30] | Wei Y.; Li Y.; Lin D.-Q.; Jin D.; Du X.; Zhong C.-X.; Zhou P.; Sun Y.; Xie X.-L.; Huang W. Org. Biomol. Chem. 2021, 19, 10408. |
[31] | Wang K.; Ling H.-F.; Bao Y.; Yang M.-T.; Yang Y.; Hussain M.; Wang H.-Y.; Zhang L.-B.; Xie L.-H.; Yi M.-D.; Huang W.; Xie X.-L.; Zhu J.-T. Adv. Mater. 2018, 30, 1800595. |
[32] | Frisch M. J.; Trucks G.; Schlegel H. B.; Scuseria G. E.; Robb M. A.; Cheeseman J. R.; Scalmani J. R.; Barone V.; Mennucci B.; Petersson G. A.; Nakatsuji H.; Caricato M.; Li X.; Hratchian H. P.; Izmaylov A. F.; Bloino J.; Zheng G.; Sonnenberg J. L.; Hada M.; Ehara M.; Toyota K.; Fukuda R.; Hasegawa J.; Ishida M.; Nakajima T.; Honda Y.; Kitao O.; Nakai H.; Vreven T.; Montgomery J. J. A.; Peralta J. E.; Ogliaro F.; Bearpark M.; Heyd J. J.; Brothers E.; Kudin K. N.; Staroverov V. N.; Kobayashi R.; Normand J.; Raghavachari K.; Rendell A.; Burant J. C.; Iyengar S. S.; Tomasi J.; Cossi M.; Rega N.; Millam J. M.; Klene M.; Knox J. E.; Cross J. B.; Bakken V.; Adamo C.; Jaramillo J.; Gomperts R.; Stratmann R. E.; Yazyev O.; Austin A. J.; Cammi R.; Pomelli C.; Ochterski J. W.; Martin R. L.; Morokuma K.; Zakrzewski V. G.; Voth G. A.; Salvador P.; Dannenberg J. J.; Dapprich S.; Daniels A. D.; Farkas O.; Foresman J. B.; Ortiz J. V.; Cioslowski J.; Fox D. J. Gaussian 09, Revision, A. 02, 2009. |
/
〈 |
|
〉 |