光热材料的发展现状及应用前景★
收稿日期: 2023-05-17
网络出版日期: 2023-07-13
基金资助
国家自然科学基金(21788102); 广东省自然科学基金(2019B030301003); 以及香港创新科技委员会(ITC-CNERC14SC01)
Recent Advances and Application Prospects in Photothermal Materials★
Received date: 2023-05-17
Online published: 2023-07-13
Supported by
National Natural Science Foundation of China(21788102); Natural Science Foundation of Guangdong Province(2019B030301003); Innovation and Technology Commission of Hong Kong(ITC-CNERC14SC01)
光热效应是指材料在太阳光或激光照射下产生热量的特性, 通过光热作用不仅能够最大限度地提高太阳能转换效率, 而且还可以充分发挥激光的传播优势打破材料在时间和空间维度上的局限性, 因而具有巨大的发展潜力和应用前景. 目前, 研究人员根据上述光热效应的特性和优势, 在能源利用、生物医药、催化转化、智能器件等领域进行了广泛和深入的研究和探索, 实现了该效应在光热海水淡化、光热治疗、光热催化、光热智能材料等领域的应用. 本文从目前研究中被普遍认可的光热效应机理出发, 综述了近期研究人员在光热材料开发及其利用等方面的研究进展, 并展望了光热材料未来可能发展方向, 以期进一步促进光热材料的发展及应用.
徐赫 , 韩鹏博 , 秦安军 , 唐本忠 . 光热材料的发展现状及应用前景★[J]. 化学学报, 2023 , 81(10) : 1420 -1437 . DOI: 10.6023/A23050232
Photothermal effect refers to the characteristics of materials that could generate heat under the irradiation of sun or laser light. It can not only maximize the efficiency of solar energy conversion, but also break through the spatiotemporal limitation of laser light transmission, which holds excellent potential and application prospect. Currently, researchers have developed many photothermal materials based on three main photothermal effect mechanisms, plasmonic heating, non-radiative relaxation in semiconductors and thermal vibration in molecules, which include metal nanomaterials, inorganic semiconductor materials, carbon materials, two-dimensional transition metal carbides and nitrides (MXenes), organic small molecules, polymer materials, metal organic framework (MOF), covalent organic framework (COF), organic co-crystals materials, etc. Among them, inorganic materials have the advantages of a wide range of sources, simple structure and excellent thermal stability, while organic materials can be easily designed in structure, and have better biocompatibility. Based on these attractive characteristics, the photothermal effects have been extensively investigated in the area of energy utilization, biomedicine, catalytic conversion, intelligent devices, etc., and realized the applications in photothermal solar evaporation, photothermal therapy, photothermal catalysis, photothermal functional materials. In addition to the rapid development of traditional applications, novel applications have also been explored, such as anti-icing coating, reversible adhesive, agriculture heaters, photothermal energy storage, photothermal induced self-healing materials, photothermal-driven soft robots, etc. However, there are still some challenges in the research of photothermal materials, such as narrow absorption range, low photothermal conversion efficiency, limited application development, and difficulty in use of the elevated temperature induced by photothermal effect. This review briefly summarizes the progresses in the development, utilization of photothermal materials. The challenges and the development direction of photothermal materials are also discussed. It is hope that this review could provide inspiration for the further research in terms of construction of new photothermal materials and innovation of their application.
[1] | Mekonnen, M. M.; Hoekstra, A. Y. Sci. Adv. 2016, 2, e1500323. |
[2] | Kerr, R. A.; Service, R. F. Science 2005, 309, 101. |
[3] | Chu, S.; Majumdar, A. Nature 2012, 488, 294. |
[4] | Elimelech, M.; Phillip, W. A. Science 2011, 333, 712. |
[5] | Zhao, Y.; Gao, W.; Li, S.; Williams, G. R.; Mahadi, A. H.; Ma, D. Joule 2019, 3, 920. |
[6] | Ni, G.; Li, G.; Boriskina, S. V.; Li, H.; Yang, W.; Zhang, T.; Chen, G. Nat. Energy 2016, 1, 16126. |
[7] | Ding, W.; Bauer, T. Engineering 2021, 7, 334. |
[8] | Song, C.; Wang, Z.; Yin, Z.; Xiao, D.; Ma, D. Chem Catalysis 2022, 2, 52. |
[9] | Gao, M.; Zhu, L.; Peh, C. K.; Ho, G. W. Energ. Environ. Sci. 2019, 12, 841. |
[10] | Chen, C.; Kuang, Y.; Hu, L. Joule 2019, 3, 683. |
[11] | Aslam, U.; Rao, V. G.; Chavez, S.; Linic, S. Nat. Catal. 2018, 1, 656. |
[12] | Jiang, N.; Zhuo, X.; Wang, J. Chem. Rev. 2018, 118, 3054. |
[13] | Brongersma, M. L.; Halas, N. J.; Nordlander, P. Nat. Nanotechnol. 2015, 10, 25. |
[14] | Zhou, L.; Tan, Y.; Wang, J.; Xu, W.; Yuan, Y.; Cai, W.; Zhu, S.; Zhu, J. Nat. Photonics. 2016, 10, 393. |
[15] | Link, S.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 4212. |
[16] | Jain, P. K.; Lee, K. S.; El-Sayed, I. H.; El-Sayed, M. A. J. Phys. Chem. B 2006, 110, 7238. |
[17] | Liu, X.; Wei, R.; Hoang, P. T.; Wang, X.; Liu, T.; Keller, P. Adv. Funct. Mater. 2015, 25, 3022. |
[18] | Yao, J.; Li, T.; Ma, S.; Qian, G.; Song, G.; Zhang, J.; Zhou, H.; Liu, G. Smart Mater. Struct. 2020, 29, 115040. |
[19] | Sun, W.; Zhong, G.; Kubel, C.; Jelle, A. A.; Qian, C.; Wang, L.; Ebrahimi, M.; Reyes, L. M.; Helmy, A. S.; Ozin, G. A. Angew. Chem. Int. Ed. 2017, 56, 6329. |
[20] | Zhou, P.; Navid, I. A.; Xiao, Y.; Ye, Z.; Dong, W. J.; Wang, P.; Sun, K.; Mi, Z. J. Phys. Chem. Lett. 2022, 13, 8122. |
[21] | Link, S.; Wang, Z. L.; El-Sayed, M. A. J. Phys. Chem. B 1999, 103, 3529. |
[22] | Zhang, S.; Shi, Y.; He, T.; Ni, B.; Li, C.; Wang, X. Chem. Mater. 2018, 30, 8727. |
[23] | Wang, J.; Li, Y.; Deng, L.; Wei, N.; Weng, Y.; Dong, S.; Qi, D.; Qiu, J.; Chen, X.; Wu, T. Adv. Mater. 2017, 29, 1603730. |
[24] | Yang, J.; Pang, Y.; Huang, W.; Shaw, S. K.; Schiffbauer, J.; Pillers, M. A.; Mu, X.; Luo, S.; Zhang, T.; Huang, Y.; Li, G.; Ptasinska, S.; Lieberman, M.; Luo, T. ACS Nano 2017, 11, 5510. |
[25] | Feng, G.; Zhang, G. Q.; Ding, D. Chem. Soc. Rev. 2020, 49, 8179. |
[26] | Chen, Q.; Pei, Z.; Xu, Y.; Li, Z.; Yang, Y.; Wei, Y.; Ji, Y. Chem. Sci. 2018, 9, 623. |
[27] | Zhang, M.; Chen, Y.; Li, D.; He, Z. ; Wang, H.; Wu, A.; Fei, W.; Zheng, C.; Liu, E.; Huang, Y. ACS Appl. Mater. Interfaces 2022, 14, 38550. |
[28] | Nair, R. V.; Puthiyaparambath, M. F.; Chatanathodi, R.; Nair, L. V.; Jayasree, R. S. Nanoscale, 2022, 14, 13561. |
[29] | Neumann, O.; Urban, A. S.; Day, J.; Lal, S.; Nordlander, P.; Halas, N. J. ACS Nano. 2013, 7, 42. |
[30] | Hogan. N. J.; Urban, A. S.; Ayala-Orozco, C.; Pimpinelli, A.; Nordlander, P.; Halas, N. J. Nano Lett. 2014, 14, 4640. |
[31] | Liu, Y.; Yu, S.; Feng, R.; Bernard, A.; Liu, Y.; Zhang, Y.; Duan, H.; Shang, W.; Tao, P.; Song, C.; Deng, T. Adv. Mater. 2015, 27, 2768. |
[32] | Chen, M.; He, Y.; Huang, J.; Zhu, J. Energy Convers. Manage. 2016, 127, 293. |
[33] | Zhou, L.; Tan, Y.; Ji, D.; Zhu, B.; Zhang, P.; Xu, J.; Gan, Q.; Yu, Z.; Zhu, J. Sci. Adv. 2016, 2, e1501227. |
[34] | Zhu, M.; Li, Y.; Chen, F.; Zhu, X.; Dai, J.; Li, Y.; Yang, Z.; Yan, X.; Song, J.; Wang, Y.; Hitz, E.; Luo, W.; Lu, M.; Yang, B.; Hu, L. Adv. Energy Mater. 2018, 8, 1701028. |
[35] | Zhu, G.; Xu, J.; Zhao, W.; Huang, F. ACS Appl. Mater. Interfaces. 2016, 8, 31716. |
[36] | Ding, D.; Huang, W.; Song, C.; Yan, M.; Guo, C.; Liu, S. Chem. Commun. 2017, 53, 6744. |
[37] | Chen, R.; Wu, Z.; Zhang, T.; Yu, T.; Ye, M. RSC Adv. 2017, 7, 19849. |
[38] | Yang, Y.; Yang, Y.; Chen, S.; Lu, Q.; Song, L.; Wei, Y.; Wang, X. Nat. Commun. 2017, 8, 1559. |
[39] | Lu, Q.; Huang, B.; Zhang, Q.; Chen, S.; Gu, L.; Song, L.; Yang, Y.; Wang, X. J. Am. Chem. Soc. 2021, 143, 9858. |
[40] | Liu, J.; Shi, W.; Wang, X. J. Am. Chem. Soc. 2019, 141, 18754. |
[41] | Zhang, S.; Lu, Q.; Yu, B.; Cheng, X.; Zhuang, J.; Wang, X. Adv. Funct. Mater. 2021, 31, 2100703. |
[42] | Liu, J.; Liu, N.; Wang, H.; Shi, W.; Zhuang, J.; Wang, X. J. Am. Chem. Soc. 2020, 142, 17557. |
[43] | Shi, Y.; Li, R.; Jin, Y.; Zhuo, S.; Shi, L.; Chang, J.; Hong, S.; Ng, K-C.; Wang, P. Joule 2018, 2, 1171. |
[44] | Cui, L.; Zhang, P.; Xiao, Y.; Liang, Y.; Liang, H.; Cheng, Z.; Qu, L. Adv. Mater. 2018, 30, e1706805. |
[45] | Fu, Y.; Wang, G.; Ming, X.; Liu, X.; Hou, B.; Mei, T.; Li, J.; Wang, J.; Wang, X. Carbon 2018, 130, 250. |
[46] | Hu, X.; Xu, W.; Zhou, L.; Tan, Y.; Wang, Y.; Zhu, S.; Zhu, J. Adv. Mater. 2017, 29, 1604031. |
[47] | Chen, T.; Wang, S.; Wu, Z.; Wang, X.; Peng, J.; Wu, B.; Cui, J.; Fang, X.; Xie, Y.; Zheng, N. J. Mater. Chem. A 2018, 6, 14571. |
[48] | Chen, C.; Li, Y.; Song, J.; Yang, Z.; Kuang, Y.; Hitz, E.; Jia, C.; Gong, A.; Jiang, F.; Zhu, J. Y.; Yang, B.; Xie, J.; Hu, L. Adv. Mater. 2017, 29, 1701756. |
[49] | Wang, Y.; Zhang, L.; Wang, P. ACS Sustainable Chem. Eng. 2016, 4, 1223. |
[50] | Sajadi, S. M.; Farokhnia, N.; Irajizad, P.; Hasnain, M.; Ghasemi, H. J. Mater. Chem. A 2016, 4, 4700. |
[51] | Liu, Y.; Chen, J.; Guo, D.; Cao, M.; Jiang, L. ACS Appl. Mater. Interfaces. 2015, 7, 13645. |
[52] | Wu, J.; Lei, J. H.; He, B.; Deng, C.-X.; Tang, Z.; Qu, S. Aggregate 2021, 2, e139. |
[53] | Jia, C.; Li, Y.; Yang, Z.; Chen, G.; Yao, Y.; Jiang, F.; Kuang, Y.; Pastel, G.; Xie, H.; Yang, B.; Das, S.; Hu, L. Joule 2017, 1, 588. |
[54] | Cheng, Y.; Cheng, S.; Chen, B.; Jiang, J.; Tu, C.; Li, W.; Yang, Y.; Huang, K.; Wang, K.; Yuan, H.; Li, J.; Qi, Y.; Liu, Z. J. Am. Chem. Soc. 2022, 144, 15562. |
[55] | Gao, Y.; Tang, Z.; Chen, X.; Yan, J.; Jiang, Y.; Xu, J.; Tao, Z.; Wang, L.; Liu, Z.; Wang, G. Aggregate. 2023, 4, e248. |
[56] | Zhou, P.; Zhu, Q.; Sun, X.; Liu, L.; Cai, Z.; Xu, J. Chem. Eng. J. 2023, 464, 142508. |
[57] | Niu, W.; Chen, G. Y.; Xu, H.; Liu, X.; Sun, J. Adv. Mater. 2022, 34, e2108232. |
[58] | Jung, H. S.; Verwilst, P.; Sharma, A.; Shin, J.; Sessler, J. L.; Kim, J. S. Chem. Soc. Rev. 2018, 47, 2280. |
[59] | Xu, C.; Ye, R.; Shen, H.; Lam, J. W. Y.; Zhao, Z.; Tang, B. Z. Angew. Chem. Int. Ed. 2022, 61, e202204604. |
[60] | Zhu, S.; Tian, R.; Antaris, A. L.; Chen, X.; Dai, H. Adv. Mater. 2019, 31, e1900321. |
[61] | Espín, J.; Garzón-Tovar, L.; Carné-Sánchez, A.; Imaz, I.; Maspoch, D. ACS Appl. Mater. Interfaces 2018, 10, 9555. |
[62] | Lu, B.; Chen, Y.; Li, P.; Wang, B.; Müllen, K.; Yin, M. Nat. Commun. 2019, 10, 767. |
[63] | Wang, D.; Kan, X.; Wu, C.; Gong, Y.; Guo, G.; Liang, T.; Wang, L.; Li, Z.; Zhao, Y. Chem. Commun. 2020, 56, 5223. |
[64] | Chen, Y.-T.; Wen, X.; He, J.; Li, Z.; Zhu, S.; Chen, W.; Yu, J.; Guo, Y.; Ni, S.; Chen, S.; Dang, L.; Li, M.-D. ACS Appl. Mater. Interfaces 2022, 14, 28781. |
[65] | Xu, J.; Chen, Q.; Li, S.; Shen, J.; Keoingthong, P.; Zhang, L.; Yin, Z.; Cai, X.; Chen, Z.; Tan, W. Angew. Chem. Int. Ed. 2022, 61, e202202571. |
[66] | Li, J.; Liu, W.; Qiu, X.; Zhao, X.; Chen, Z.; Yan, M.; Fang, Z.; Li, Z.; Tu, Z.; Huang, J. Green Chem. 2022, 24, 823. |
[67] | Dai, S.; Yue, S.; Ning, Z.; Jiang, N.; Gan, Z. ACS Appl. Mater. Interfaces 2022, 14, 14668. |
[68] | Cai, Y.; Liang, P.; Tang, Q.; Yang, X.; Si, W.; Huang, W.; Zhang, Q.; Dong, X. ACS Nano 2017, 11, 1054. |
[69] | Qi, J.; Fang, Y.; Kwok, R. T. K.; Zhang, X.; Hu, X.; Lam, J. W. Y.; Ding, D.; Tang, B. Z. ACS Nano 2017, 11, 7177. |
[70] | Cui, Y.; Liu, J.; Li, Z.; Ji, M.; Zhao, M.; Shen, M.; Han, X.; Jia, T.; Li, C.; Wang, Y. Adv. Funct. Mater. 2021, 31, 2106247. |
[71] | Liu, J.; Cui, Y.; Pan, Y.; Chen, Z.; Jia, T.; Li, C.; Wang, Y. Angew. Chem. Int. Ed. 2022, 61, e202117087. |
[72] | Luo, J.; Xie, Z.; Lam, J. W. Y.; Cheng, L.; Chen, H.; Qiu, C.; Kwok, H. S.; Zhan, X.; Liu, Y.; Zhu, D.; Tang, B. Z. Chem. Commun. 2001, 18, 1740. |
[73] | Zhao, Z.; Chen, C.; Wu, W.; Wang, F.; Du, L.; Zhang, X.; Xiong, Y.; He, X.; Cai, Y.; Kwok, R. T. K.; Lam, J. W. Y.; Gao, X.; Sun, P.; Phillips, D. L.; Ding, D.; Tang, B. Z. Nat. Commun. 2019, 10, 768. |
[74] | Wang, Z.; Zhou, J.; Zhang, Y.; Zhu, W.; Li, Y. Angew. Chem. Int. Ed. 2022, 61, e202113653. |
[75] | Zhang, L.; Tang, B.; Wu, J.; Li, R.; Wang, P. Adv. Mater. 2015, 27, 4889. |
[76] | Hao, D.; Yang, Y.; Xu, B.; Cai, Z. Appl. Therm. Eng. 2018, 141, 406. |
[77] | Wang, X.; Liu, Q.; Wu, S.; Xu, B.; Xu, H. Adv. Mater. 2019, 31, e1807716. |
[78] | Bai, W.; Xiang, P.; Liu, H.; Guo, H.; Tang, Z.; Yang, P.; Zou, Y.; Yang, Y.; Gu, Z.; Li, Y. Macromolecules 2022, 55, 6426. |
[79] | Wang, H.; Huang, J.; Liu, W.; Huang, J.; Yang, D.; Qiu, X.; Zhang, J. Macromolecules 2022, 55, 8629. |
[80] | Chen, J.; Qi, J.; He, J.; Yan, Y.; Jiang, F.; Wang, Z.; Zhang, Y. ACS Appl. Mater. Interfaces 2022, 14, 12748. |
[81] | Li, J.; Rao, J.; Pu, K. Biomaterials 2018, 155, 217. |
[82] | Liu, L.; Liu, M.-H.; Deng, L.-L.; Lin, B.-P.; Yang, H. J. Am. Chem. Soc. 2017, 139, 11333. |
[83] | Su, Y.; Chen, Z.; Tang, X.; Xu, H.; Zhang, Y.; Gu, C. Angew. Chem. Int. Ed. 2021, 60, 24424. |
[84] | Guo, C.; Ma, X.; Wang, B. Acta Chim. Sinica 2021, 79, 967 (in Chinese). |
[84] | (郭彩霞, 马小杰, 王博, 化学学报, 2021, 79, 967.) |
[85] | Yan, X.; Lyu, S.; Xu, X.; Chen, W.; Shang, P.; Yang, Z.; Zhang, G.; Chen, W.; Wang, Y.; Chen, L. Angew. Chem. Int. Ed. 2022, 61, e202201900. |
[86] | Jiang, C.; Feng, X.; Wang, B. Acta Chim. Sinica 2020, 78, 466 (in Chinese). |
[86] | (蒋成浩, 冯霄, 王博, 化学学报, 2020, 78, 466.) |
[87] | Zheng, N.; Xu, Y.; Zhao, Q.; Xie, T. Chem. Rev. 2021, 121, 1716. |
[88] | Utrera-Barrios, S.; Verdejo, R.; López-Manchado, M. A.; Santana, H. M. Mater. Horiz. 2020, 7, 2882. |
[89] | Lu, Y.; Zhang, P.; Zhou, Y.; Zhang, R.; Fu, X.; Feng, J.; Zhang, H. Sci. China Chem. 2023, 66, 1078. |
[90] | Wang, D.; Lee, M. M. S.; Xu, W.; Shan, G.; Zheng, X.; Kwok, R. T. K.; Lam, J. W. Y.; Hu, X.; Tang, B. Z. Angew. Chem. Int. Ed. 2019, 58, 5628. |
[91] | Li, J.; Wang, J.; Han, T.; Hu, X.; Lee, M. M. S.; Wang, D.; Tang, B. Z. Adv. Mater. 2021, 33, 2105999. |
[92] | Li, J; Yu, X.; Jiang, Y.; He, S.; Zhang, Y.; Luo, Y.; Pu, K. Adv. Mater. 2020, 33, 2003458. |
[93] | Ng, C. W.; Li, J.; Pu, K. Adv. Funct. Mater. 2018, 28, 1804688. |
[94] | Fu, Z.; Willams, G. R.; Niu, S.; Wu, J.; Gao, F.; Zhang, X.; Yang, Y.; Li, Y.; Zhu, L. Nanoscale 2020, 12, 14739. |
[95] | Yan, P.; Guo, W.; Liang, Z.; Meng, W.; Yin, Z.; Li, S.; Li, M.; Zhang, M.; Yan, J.; Xiao, D.; Zou, R.; Ma, D. Nano Res. 2019, 12, 2341. |
[96] | Zhao, H.; Liu, J.-X.; Yang, C.; Yao, S.; Su, H.-Y.; Gao, Z.; Dong, M.; Wang, J.; Rykov, A. L.; Wang, J.; Hou, Y.; Li, W.-X.; Ma, D. CCS Chem. 2021, 3, 2712. |
[97] | Wu, C.; Lin, L.; Liu, J.; Zhang, J.; Zhang, F.; Zhou, T.; Rui, N.; Yao, S.; Deng, Y.; Yang, F.; Xu, W.; Luo, J.; Zhao, Y.; Yan, B.; Wen, X.; Rodriguez, J. A.; Ma, D. Nat. Commun. 2020, 11, 5767. |
[98] | Kennedy III, J. C.; Datye, A. K. J. Catal. 1998, 179, 375. |
[99] | Meng, X.; Wang, T.; Liu, L.; Ouyang, S.; Li, P.; Hu, H.; Kako, T.; Iwai, H.; Tanaka, A.; Ye, J. Angew. Chem. Int. Ed. 2014, 53, 11478. |
[100] | Wang, R.; Zou, Y.; Hong, S.; Xu, M.; Ling, L. Acta Chim. Sinica 2021, 79, 932 (in Chinese). |
[100] | (王瑞兆, 邹云杰, 洪晟, 徐铭楷, 凌岚, 化学学报, 2021, 79, 932.) |
[101] | Gu, L.; Zhang, C.; Guo, Y.; Gao, J.; Yu, Y.; Zhang, B. ACS Sustainable Chem. Eng. 2019, 7, 3710. |
[102] | Li, X.; Zhang, X.; Everitt, H. O.; Liu, J. Nano Lett. 2019, 19, 1706. |
[103] | Gao, Q.; Tu, K.; Li, H.; Zhang, L.; Cheng, Z. Sci. China Chem. 2021, 64, 1242. |
[104] | Liu, Y.; Wang, X.; Li, Q.; Yan, T.; Lou, X.; Zhang, C.; Cao, M.; Zhang, L.; Sham, T.-K.; Zhang, Q.; He, L.; Chen, J. Adv. Funct. Mater. 2023, 33, 2210283. |
[105] | Liu, Y.; Zhong, Q.; Xu, P.; Huang, H.; Yang, F.; Cao, M.; He, L.; Zhang, Q.; Chen, J. Matter 2022, 5, 1035. |
[106] | Chen, G.; Jiang, Z.; Li, A.; Chen, X.; Ma, Z.; Song, H. J. Mater. Chem. A. 2021, 9, 16805. |
[107] | Cheng, S.; Guo, P.; Wang, X.; Che, P.; Han, X.; Jin, R.; Heng, L.; Jiang, L. Chem. Eng. J. 2022, 431, 133411. |
[108] | Abiola, T. T.; Rioux, B.; Toldo, J. M.; Alarcan, J.; Woolley, J. M.; Turner, M. A. P.; Coxon, D. J. L.; Casal, M. T. D.; Peyrot, C.; Mention, M. M.; Buma, W. J.; Ashfold, M. N. R.; Breauning, A.; Barbatti, M.; Stavros, V. G.; Allais, F. Chem. Sci. 2021, 12, 15239. |
[109] | Liu, L.; Liu, Z.; Ren, Y.; Zou, X.; Peng, W.; Li, W.; Wu, P.; Zheng, S.; Wang, X.; Yan, F. Angew. Chem. Int. Ed. 2021, 60, 8948. |
[110] | Wu, Z.; Ji, C.; Zhao, X.; Han, Y.; Mullen, K.; Pan, K.; Yin, M. J. Am. Chem. Soc. 2019, 141, 7385. |
[111] | Du, X.; Wang, J.; Jin, L.; Deng, S.; Dong, Y.; Lin, S. ACS Appl. Mater. Interfaces 2022, 14, 15225. |
[112] | Yang, L.; Lu, X.; Wang, Z.; Xia, H. Polym. Chem. 2018, 9, 2166. |
[113] | Son, D. H.; Bae, H. E.; Bae, M. J.; Lee, S.-H.; Cheong, I. W.; Park, Y. I.; Jeong, J.-E.; Kim, J. C. ACS Appl. Polym. Mater. 2022, 4, 3802. |
[114] | Huang, Y.; Bisoyi, H. K.; Huang, S.; Wang, M.; Chen, X. M.; Liu, Z.; Yang, H.; Li, Q. Angew. Chem. Int. Ed. 2021, 60, 11247. |
[115] | Nie, Z.-Z.; Zuo, B.; Wang, M.; Huang, S.; Chen, X.-M.; Liu, Z.-Y.; Yang, H. Nat. Commun. 2021, 12, 2334. |
[116] | Sun, Z.; Wei, C.; Liu, W.; Liu, H.; Liu, J.; Hao, R.; Huang, M.; He, S. ACS Appl. Mater. Interfaces 2021, 13, 33404. |
[117] | Bai, W.; Yang, P.; Liu, H.; Zou, Y.; Wang, X.; Yang, Y.; Gu, Z.; Li, Y. Macromolecules 2022, 55, 3493. |
/
〈 |
|
〉 |