化学学报 ›› 2023, Vol. 81 ›› Issue (10): 1420-1437.DOI: 10.6023/A23050232 上一篇    下一篇

所属专题: 庆祝《化学学报》创刊90周年合辑

综述

光热材料的发展现状及应用前景

徐赫a,b, 韩鹏博a,b, 秦安军a,b,*(), 唐本忠b,c,d   

  1. a 华南理工大学发光材料与器件国家重点实验室 广东省分子聚集发光重点实验室 广州 510640
    b 华南理工大学聚集诱导发光研究中心 广州 510640
    c 香港中文大学(深圳)理工学院 深圳分子聚集体科学与工程研究院 深圳 518172
    d 香港科技大学国家人体组织功能重建工程技术研究中心香港分中心 香港 999077
  • 投稿日期:2023-05-17 发布日期:2023-07-13
  • 作者简介:

    徐赫, 2021年在合肥工业大学获得学士学位, 现为华南理工大学2021级硕士研究生. 研究兴趣是有机/聚合物光热功能材料.

    秦安军, 1999 年和2004 年分别在山西大学和中国科学院化学研究所获得学士和博士学位. 2005至2008年先后在香港科技大学化学系和浙江大学高分子科学与工程学系从事博士后研究. 2008 年12月起先后任浙江大学副研究员、副教授, 2013年9月至今任华南理工大学教授、博导. 研究兴趣为高分子合成化学以及有机/聚合物功能材料. 曾获国家自然科学一等奖(2017, 2/5). 目前, 担任Aggregate《聚集体》期刊责任主编.

    唐本忠, 1982年和1988年分别在华南理工大学和日本京都大学获得学士学位和博士学位, 于1989~1994年在加拿大多伦多大学从事博士后研究. 1994年加盟香港科技大学, 2009年、2017年、2020年先后当选中国科学院院士、亚太材料科学院院士、发展中国家科学院院士. 2021年加入香港中文大学(深圳)并担任理工学院院长、校长学勤讲座教授. 主要从事高分子化学和先进功能材料研究, 是AIE概念的提出者和AIE研究的引领者. 2014年至今连续入选ESI材料和化学双领域“高被引科学家”. 曾获Biomaterials Global Impact Award, Nano Today国际科学奖、2017年度国家自然科学一等奖、何梁何利基金科学与技术进步奖等奖项.

    庆祝《化学学报》创刊90周年.
  • 基金资助:
    国家自然科学基金(21788102); 广东省自然科学基金(2019B030301003); 以及香港创新科技委员会(ITC-CNERC14SC01)

Recent Advances and Application Prospects in Photothermal Materials

He Xua,b, Pengbo Hana,b, Anjun Qina,b(), Ben Zhong Tangb,c,d   

  1. a State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
    b Center for Aggregation-Induced Emission, South China University of Technology, Guangzhou 510640, China
    c School of Science and Engineering, Shenzhen Institute of Molecular Aggregate Science and Engineering, The Chinese University of Hong Kong, Shenzhen (CUHK-Shenzhen), Guangdong 518172, China
    d Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction, The Hong Kong University of Science & Technology, Clear Water Bay, Kowloon, Hong Kong 999077, China
  • Received:2023-05-17 Published:2023-07-13
  • Contact: *E-mail: msqinaj@scut.edu.cn
  • About author:
    Dedicated to the 90th anniversary of Acta Chimica Sinica.
  • Supported by:
    National Natural Science Foundation of China(21788102); Natural Science Foundation of Guangdong Province(2019B030301003); Innovation and Technology Commission of Hong Kong(ITC-CNERC14SC01)

光热效应是指材料在太阳光或激光照射下产生热量的特性, 通过光热作用不仅能够最大限度地提高太阳能转换效率, 而且还可以充分发挥激光的传播优势打破材料在时间和空间维度上的局限性, 因而具有巨大的发展潜力和应用前景. 目前, 研究人员根据上述光热效应的特性和优势, 在能源利用、生物医药、催化转化、智能器件等领域进行了广泛和深入的研究和探索, 实现了该效应在光热海水淡化、光热治疗、光热催化、光热智能材料等领域的应用. 本文从目前研究中被普遍认可的光热效应机理出发, 综述了近期研究人员在光热材料开发及其利用等方面的研究进展, 并展望了光热材料未来可能发展方向, 以期进一步促进光热材料的发展及应用.

关键词: 光热效应, 光热材料, 光热治疗, 光热催化, 光热功能器件

Photothermal effect refers to the characteristics of materials that could generate heat under the irradiation of sun or laser light. It can not only maximize the efficiency of solar energy conversion, but also break through the spatiotemporal limitation of laser light transmission, which holds excellent potential and application prospect. Currently, researchers have developed many photothermal materials based on three main photothermal effect mechanisms, plasmonic heating, non-radiative relaxation in semiconductors and thermal vibration in molecules, which include metal nanomaterials, inorganic semiconductor materials, carbon materials, two-dimensional transition metal carbides and nitrides (MXenes), organic small molecules, polymer materials, metal organic framework (MOF), covalent organic framework (COF), organic co-crystals materials, etc. Among them, inorganic materials have the advantages of a wide range of sources, simple structure and excellent thermal stability, while organic materials can be easily designed in structure, and have better biocompatibility. Based on these attractive characteristics, the photothermal effects have been extensively investigated in the area of energy utilization, biomedicine, catalytic conversion, intelligent devices, etc., and realized the applications in photothermal solar evaporation, photothermal therapy, photothermal catalysis, photothermal functional materials. In addition to the rapid development of traditional applications, novel applications have also been explored, such as anti-icing coating, reversible adhesive, agriculture heaters, photothermal energy storage, photothermal induced self-healing materials, photothermal-driven soft robots, etc. However, there are still some challenges in the research of photothermal materials, such as narrow absorption range, low photothermal conversion efficiency, limited application development, and difficulty in use of the elevated temperature induced by photothermal effect. This review briefly summarizes the progresses in the development, utilization of photothermal materials. The challenges and the development direction of photothermal materials are also discussed. It is hope that this review could provide inspiration for the further research in terms of construction of new photothermal materials and innovation of their application.

Key words: photothermal effect, photothermal material, photothermal therapy, photothermal catalysis, photothermal functional device