综述

海水提铀吸附材料及官能团配位机理研究进展

  • 徐晗 ,
  • 王聪芝 ,
  • 刘峙嵘 ,
  • 石伟群
展开
  • a 东华理工大学 核科学与工程学院 南昌 330013
    b 中国科学院高能物理研究所 核能放射化学实验室 北京 100049

徐晗, 东华理工大学硕士研究生, 目前研究方向: 海水提铀理论计算.

王聪芝, 中国科学院高能物理研究所副研究员, 2012年博士毕业于北京理工大学. 长期专注于锕系元素计算与模拟方面的研究, 主要工作集中在海水提铀材料以及高放废液中新型锕系分离配体的理论设计方面. 目前以第一作者和通讯作者在ACS Cent. Sci.、Chem. Commun.、Inorg. Chem.等国内外知名期刊发表数十篇学术论文, 先后主持多项国家自然科学基金项目.

刘峙嵘, 本科毕业于青岛理工大学, 博士毕业于中国原子能科学研究院. 在国内外学术期刊上发表百余篇学术论文、专利12项; 获省部级奖6项. 先后主持国家自然科学基金面上/地区项目/江西省自然科学基金项目/江西省科技支撑计划项目多项. 国家自然科学基金函评专家、中国博士后科学基金评审专家、中国博士后科学基金特别资助评审专家、教育部留学归国人员科研启动基金评审专家. 中国辐射防护学会环境放射化学分会理事、中国核学会锕系元素物理与化学分会理事、中国核学会核化工分会理事. Journal of Hazardous Materials、Environmental Science & Technology、Applied Surface Science等国际学术刊物审稿专家.

石伟群, 中国科学院高能物理研究所研究员, 国家杰出青年科学基金获得者, 长期致力于核燃料循环化学相关基础研究. 在JACS、Angew. Chem、Chem.、Chem. Sci.、CCS Chem.、Nat. Commun、Adv. Mater.等国际知名期刊发表SCI 论文300余篇, 成果被国内外同行广泛关注和引用, 文章总引15000余次, H因子62 (Google Scholar), 2019~2022年每年均入选Elsevier中国高被引学者榜单(核科学技术). 分别担任期刊《Supramolecular Materials》副主编, 《Chinese Chemical Letters》、《Journal of Nuclear Fuel Cycle and Waste Technology》、《International Journal of Advanced Nuclear Reactor Design and Technology》和《Journal of Nuclear Science and Technology》的编委与国际顾问编委, 中文期刊《核化学与放射化学》编委. 现为中国核学会锕系物理与化学分会副理事长、中国有色金属学会熔盐化学与技术专业委员会副主任委员、中国化学会核化学与放射化学专业委员会委员、中国核学会核化工分会常务理事兼副秘书长.

收稿日期: 2024-02-01

  网络出版日期: 2024-03-22

Advances in Adsorption Materials and Coordination Mechanism of Functional Groups for Uranium Extraction from Seawater

  • Han Xu ,
  • Congzhi Wang ,
  • Zhirong Liu ,
  • Weiqun Shi
Expand
  • a School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
    b Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China

Received date: 2024-02-01

  Online published: 2024-03-22

摘要

铀是核工业发展中最重要的元素之一, 但陆地铀资源有限难以满足核工业的发展需求, 而海水中蕴含着丰富的铀资源, 因此如何从海水中提取铀备受关注. 然而由于海水条件复杂且铀浓度极低, 从海水中提取铀面临着很多挑战, 国内外诸多学者对此进行了大量研究, 目前已经开发出多种分离富集方法, 其中吸附法已被较广泛应用于海水提铀中. 本综述重点介绍了近年来开发的海水提铀吸附材料, 包括无机材料、有机材料、无机-有机杂化材料, 主要从材料的吸附能力、选择性、抗菌性、稳定性、可回收性以及制备成本等方面进行分析, 另外对偕胺肟和羧基等典型官能团以及近年来报道的其他代表性官能团与铀酰离子的配位机理进行总结分析, 同时对未来海水提铀材料的发展进行了展望.

本文引用格式

徐晗 , 王聪芝 , 刘峙嵘 , 石伟群 . 海水提铀吸附材料及官能团配位机理研究进展[J]. 化学学报, 2024 , 82(4) : 458 -470 . DOI: 10.6023/A24020041

Abstract

Uranium is one of the most important elements in the development of nuclear industry. However, terrestrial uranium resources are limited and difficult to meet the development needs. Since seawater is rich in uranium resources (about 4.5×109 t), which is more than one thousand times of the known terrestrial uranium resources, how to extract uranium resources from seawater has attracted much attention. However, uranium exists in seawater in the stable carbonate of [UO2(CO3)3]4-, which has a very low concentration of 3.3 μg/L, and the competitive ions especially for vanadium ions and biological contamination are serious obstacles to the extraction of uranium. Because of these complicated conditions of seawater and the extremely low concentration of uranium, uranium extraction from seawater faces many challenges. Many researchers have carried out a lot of studies, and various methods have been developed for the extraction of uranium from seawater. Among them, the adsorption method has been widely used in the extraction of uranium from seawater. This review focuses on the adsorption materials developed in recent years for uranium extraction from seawater, including inorganic materials, organic materials, inorganic-organic hybrid materials, and analyzes their advantages and disadvantages of the materials in terms of their adsorption capacity, selectivity, antimicrobial properties, stability, and recyclability. At the same time, the coordination mechanism of the typical functional groups such as amidoxime and carboxyl groups as well as other representative functional groups reported in recent years toward uranyl cations have been summarized, and the results show that in addition to amidoxime, other functional groups such as pentadentate chelating ligands also have good affinities for uranyl cations. Besides, the future development of uranium extraction materials from seawater is also prospected. This review is expected to improve our current understanding of the interaction mechanism of functional groups toward uranyl cations, and provide references for the development of efficient materials for uranium extraction from seawater.

参考文献

[1]
Wang, L.-L.; Luo, F.; Dang, L.-L.; Li, J. Q.; Wu, X.-L.; Liu, S.-J.; Luo, M.-B. J. Mater. Chem. A 2015, 3, 13724.
[2]
Fukaya, Y.; Goto, M. Ann. Nucl. Energy 2017, 99, 19.
[3]
Lindner, H.; Schneider, E. Energy Econ. 2015, 49, 9.
[4]
Endrizzi, F.; Rao, L.-F. Chem. - Eur. J. 2014, 20, 14499.
[5]
Davies, R. V.; Kennedy, J.; McIlroy, R. W.; Spence, R.; Hill, K. M. Nature 1964, 203, 1110.
[6]
Hu, B.-W.; Wang, H.-F.; Liu, R.-R.; Qiu, M.-Q. Chemosphere 2021, 274, 129743.
[7]
Li, S.-J.; Hu, Y.-Z.; Shen, Z.-W.; Cai, Y.-W.; Ji, Z.-Y.; Tan, X.-L.; Liu, Z.-X.; Zhao, G.-X.; Hu, S.-X.; Wang, X.-K. Sci. China: Chem. 2021, 64, 1323.
[8]
Zhang, Z.-C.; Parker, B. F.; Lohrey, T. D.; Teat, S. J.; Arnold, J.; Rao, L.-F. Dalton Trans. 2018, 47, 8134.
[9]
Scanlan, J. P. J. Inorg. Nucl. Chem. 1977, 39, 635.
[10]
Endrizzi, F.; Leggett, C. J.; Rao, L.-F. Ind. Eng. Chem. Res. 2016, 55, 4249.
[11]
Parker, B. F.; Hohloch, S.; Pankhurst, J. R.; Zhang, Z.; Love, J. B.; Arnold, J.; Rao, L. Dalton Trans. 2018, 47, 5695.
[12]
Choppin, G. R. Mar. Chem. 1989, 28, 19.
[13]
Gholap, H.; Warule, S.; Sangshetti, J.; Kulkarni, G.; Banpurkar, A.; Satpute, S.; Patil, R. Appl. Microbiol. Biotechnol. 2016, 100, 5849.
[14]
Wang, Y.; Wang, J.-J.; Wang, J.; Liang, J.-J.; Pan, D.-Q.; Li, P.; Fan, Q.-H. J. Mol. Liq. 2020, 308, 113007.
[15]
Yu, J.-Q.; Zhang, H.-S.; Liu, Q.; Zhu, J.-H.; Yu, J.; Sun, G.-H.; Li, R.-M.; Wang, J. J. Hazard. Mater. 2022, 440, 129735.
[16]
Donia, A. M.; Atia, A. A.; Moussa, E. M. M.; El-Sherif, A. M.; Abd El Magied, M. O. Hydrometallurgy 2009, 95, 183.
[17]
Luo, W.; Kelly, S. D.; Kemner, K. M.; Watson, D.; Zhou, J.; Jardine, P. M.; Gu, B. Environ. Sci. Technol. 2009, 43, 7516.
[18]
Gupta, S. K.; Rathore, N. S.; Sonawane, J. V.; Pabby, A. K.; Janardan, P.; Changrani, R. D.; Dey, P. K. J. Membr. Sci. 2007, 300, 131.
[19]
Jalali, F.; Fakhari, J.; Zolfaghari, A. Hydrometallurgy 2019, 185, 194.
[20]
Kabay, N.; Demircio?lu, M.; Yayli, S.; Günay, E.; Yüksel, M.; Saglam, M.; Streat, M. Ind. Eng. Chem. Res. 1998, 37, 1983.
[21]
Lee, S.; Kang, U.; Piao, G.; Kim, S.; Han, D. S.; Park, H. Appl. Catal., B 2017, 207, 35.
[22]
Liu, Z.-Y.; Xie, Y.; Wang, Y.-F.; Hu, T.-Y.; Ye, G.; Chen, J. Tsinghua Univ. (Sci. & Technol.) 2021, 61, 23. (in Chinese)
[22]
(刘泽宇, 谢忆, 王一凡, 胡铜洋, 叶钢, 陈靖, 清华大学学报(自然科学版), 2021, 61, 23.)
[23]
Xiong, J.; Wen, J.; Hu, S.; Wang, X.-L. J. Nucl. Radiochem. 2015, 37, 257. (in Chinese)
[23]
(熊洁, 文君, 胡胜, 汪小琳, 核化学与放射化学, 2015, 37, 257.)
[24]
Wu, Y.; Xie, Y.-H.; Liu, X.-L.; Li, Y.; Wang, J.-Y.; Chen, Z.-S.; Yang, H.; Hu, B.-W.; Shen, C.; Tang, Z.-W.; Huang, Q.-F.; Wang, X.-K. Coord. Chem. Rev. 2023, 483, 215097.
[25]
Xin, Q.; Wang, Q.-L.; Gan, J.-L.; Lei, Z.-W.; Hu, E.-M.; Wang, H.-Q.; Wang, H.-Q. Carbohydr. Polym. 2023, 300, 120270.
[26]
Abney, C. W.; Mayes, R. T.; Saito, T.; Dai, S. Chem. Rev. 2017, 117, 13935.
[27]
Wang, X.-L.; Wen, J. Uranium Extraction from Seawater, Science Press, Beijing, 2022, p. 163. (in Chinese)
[27]
(汪小琳, 文君, 海水提铀, 科学出版社, 北京, 2022, p. 163.)
[28]
Astheimer, L.; Schenk, H. J.; Witte, E. G.; Schwochau, K. Sep. Sci. Technol. 1983, 18, 307.
[29]
Wang, C.-Z.; Lan, J.-H.; Wu, Q.-Y.; Luo, Q.; Zhao, Y.-L.; Wang, X.-K.; Chai, Z.-F.; Shi, W.-Q. Inorg. Chem. 2014, 53, 9466.
[30]
Zhu, J.-H.; Liu, Q.; Li, Z.-S.; Liu, J.-Y.; Zhang, H.-S.; Li, R.-M.; Wang, J. J. Hazard. Mater. 2018, 353, 9.
[31]
Zuo, L.-H.; Peng, W.; Xu, Z.-Z.; Guo, H.-Y.; Luo, M.-B. React. Funct. Polym. 2022, 179, 105376.
[32]
Lan, F.-F.; Li, X.-H.; Yang, Y. J. Guangdong Univ. Technol. 2023, 40, 139. (in Chinese)
[32]
(蓝芳芳, 李贤辉, 杨阳, 广东工业大学学报, 2023, 40, 139.)
[33]
Tang, X.-R.; Huang, P.-L.; Ruan, H.-M.; Tang, L.; Gong, X.; Duan, T.; Chen, S.-S.; He, R.; Zhu, W.-K. J. Nucl. Radiochem. 2023, 45, 267. (in Chinese)
[33]
(唐兴睿, 黄鹏玲, 阮昊明, 唐丽, 龚翔, 段涛, 陈树森, 何嵘, 竹文坤, 核化学与放射化学, 2023, 45, 267.)
[34]
Tian, G.-X.; Liu, T.-T.; Yang, S.-L. At. Energy Sci. Technol. 2023, 57, 1. (in Chinese)
[34]
(田国新, 刘婷婷, 杨素亮, 原子能科学技术, 2023, 57, 1.)
[35]
Ao, J.-X.; Xu, X.; Li, Y.-N.; Wu, G.-Z.; Li, Q.-N.; Ma, H.-J. J. Radiat. Res. Radiat. Process. 2019, 37, 3. (in Chinese)
[35]
(敖浚轩, 徐晓, 李玉娜, 吴国忠, 李晴暖, 马红娟, 辐射研究与辐射工艺学报, 2019, 37, 3.)
[36]
Zhu, Y.-J.; Xu, Y.; Jian, M.-P.; Li, H.-Y.; Wang, C.-C. Chem. Ind. Eng. Prog. 2023, 42, 3029. (in Chinese)
[36]
(朱雅静, 徐岩, 简美鹏, 李海燕, 王崇臣, 化工进展, 2023, 42, 3029.)
[37]
Li, L.-Y.; Wen, J.; Hu, S.; Wang, X.-L. J. Nucl. Radiochem. 2022, 44, 15. (in Chinese)
[37]
(李璐琰, 文君, 胡胜, 汪小琳, 核化学与放射化学, 2022, 44, 15.)
[38]
Li, Z.-M.; Niu, Y.-Q.; Su, Y.-T.; Song, Y.; Wang, F.-J.; Gou, Y.-F.; Wang, H.-Z.; Chen, H.-S. J. Nucl. Radiochem. 2022, 44, 233. (in Chinese)
[38]
(李子明, 牛玉清, 宿延涛, 宋艳, 王凤菊, 勾阳飞, 王海珍, 陈树森, 核化学与放射化学, 2022, 44, 233.)
[39]
Feng, J.; He, G.-Q.; Wei, Y.-X.; Duan, T.; Zhou, J. New Chem. Mater. 2022, 50, 7. (in Chinese)
[39]
(冯健, 何桂强, 魏艳霞, 段涛, 周建, 化工新型材料, 2022, 50, 7.)
[40]
Endrizzi, F.; Leggett, C. J.; Rao, L.-F. Ind. Eng. Chem. Res. 2016, 55, 4249.
[41]
Denning, R. G. J. Phys. Chem. A 2007, 111, 4125.
[42]
Shi, W.-Q.; Yuan, L.-Y.; Wang, C.-Z.; Wang, L.; Mei, L.; Xiao, C.-L.; Zhang, L.; Li, Z.-J.; Zhao, Y.-L.; Chai, Z.-F. Adv. Mater. 2014, 26, 7807.
[43]
Pyykk?, P.; Li, J.; Runeberg, N. J. Phys. Chem. 1994, 98, 4809.
[44]
Kim, J.; Tsouris, C.; Mayes, R. T.; Oyola, Y.; Saito, T.; Janke, C. J.; Dai, S.; Schneider, E.; Sachde, D. Sep. Sci. Technol. 2013, 48, 367.
[45]
Li, B.; Zhou, J.-W.; Priest, C.; Jiang, D.-e. J. Phys. Chem. B 2017, 121, 8171.
[46]
Kanno, M. J. Nucl. Sci. Technol. 1984, 21, 1.
[47]
Zou, W.-H.; Zhao, L.; Han, R.-P. Chin. J. Chem. Eng. 2009, 17, 585.
[48]
Zhang, H.; Dai, Z.-R.; Sui, Y.; Xue, J. H.; Ding, D.-X. J. Radioanal. Nucl. Chem. 2018, 317, 613.
[49]
Ma, S.-L.; Huang, L.; Ma, L.-J.; Shim, Y.; Islam, S. M.; Wang, P.-L.; Zhao, L.-D.; Wang, S.-C.; Sun, G.-B.; Yang, X.-J.; Kanatzidis, M. G. J. Am. Chem. Soc. 2015, 137, 3670.
[50]
Wang, H.; Yao, H.-Q.; Chen, L.-H.; Yu, Z.-H.; Yang, L.-X.; Li, C.; Shi, K.-R.; Li, C.-Q.; Ma, S.-L. Sci. Total Environ. 2021, 759, 143483.
[51]
Wang, Q.; Yang, L.-X.; Yao, H.-Q.; Wu, Z.-L.; Liu, R.; Ma, S.-L. Dalton Trans. 2022, 51, 13046.
[52]
Liu, S.; Wang, Z.; Lu, Y.-X.; Li, H.-P.; Chen, X.-J.; Wei, G.-Y.; Wu, T.; Maguire, D. J.; Ye, G.; Chen, J. Appl. Catal., B 2021, 282, 119523.
[53]
Zeng, X.-K.; Liu, Y.; Xia, Y.; Uddin, M. H.; Xia, D.; McCarthy, D. T.; Deletic, A.; Yu, J.-G.; Zhang, X.-W. Appl. Catal., B 2020, 274, 119095.
[54]
Koske, P. H.; Ohlrogge, K.; Peinemann, K. V. Sep. Sci. Technol. 1988, 23, 1929.
[55]
Das, S.; Oyola, Y.; Mayes, R. T.; Janke, C. J.; Kuo, L. J.; Gill, G.; Wood, J. R.; Dai, S. Ind. Eng. Chem. Res. 2016, 55, 4110.
[56]
Das, S.; Brown, S.; Mayes, R. T.; Janke, C. J.; Tsouris, C.; Kuo, L. J.; Gill, G.; Dai, S. Chem. Eng. J. 2016, 298, 125.
[57]
Wang, D.; Song, J.-A.; Wen, J.; Yuan, Y.-H.; Liu, Z.-L.; Lin, S.; Wang, H.-Y.; Wang, H.-L.; Zhao, S.-L.; Zhao, X.-M.; Fang, M.-H.; Lei, M.; Li, B.; Wang, N.; Wang, X.-L.; Wu, H. Adv. Energy Mater. 2018, 8, 12.
[58]
Yuan, Y.-H.; Zhao, S.-L.; Wen, J.; Wang, D.; Guo, X.-W.; Xu, L.-L.; Wang, X.-L.; Wang, N. Adv. Funct. Mater. 2019, 29, 11.
[59]
Li, Z.; Yu, Z.-Q.; Wu, Y.-D.; Wu, X.-L.; Wan, Y.; Yuan, Y.-H.; Wang, N. Chem. Eng. J. 2020, 390, 124648.
[60]
Yan, B.-J.; Ma, C.-X.; Gao, J.-X.; Yuan, Y.-H.; Wang, N. Adv. Mater. 2020, 32, 8.
[61]
Gao, J.-X.; Yuan, Y.-H.; Yu, Q.-H.; Yan, B.-J.; Qian, Y.-X.; Wen, J.; Ma, C.-X.; Jiang, S.-H.; Wang, X.-L.; Wang, N. Chem. Commun. 2020, 56, 3935.
[62]
Yuan, Y.-H.; Guo, X.; Feng, L.-J.; Yu, Q.-H.; Lin, K.; Feng, T.-T.; Yan, B.-J.; Fedorovich, K. V.; Wang, N. Chem. Eng. J. 2021, 421, 127878.
[63]
Liu, R.-R.; Wen, S.-X.; Sun, Y.; Yan, B.-J.; Wang, J.-W.; Chen, L.; Peng, S.-Y.; Ma, C.; Cao, X.-Y.; Ma, C.-X.; Duan, G.-G.; Shi, S.; Yuan, Y.-H.; Wang, N. Chem. Eng. J. 2021, 422, 130060.
[64]
Wen, S.-X.; Sun, Y.; Liu, R.-R.; Chen, L.; Wang, J.-W.; Peng, S.-Y.; Ma, C.-X.; Yuan, Y.-H.; Gong, W.-T.; Wang, N. ACS Appl. Mater. Interfaces 2021, 13, 3246.
[65]
Xu, X.; Zhang, H.-J.; Ao, J.-X.; Xu, L.; Liu, X.-Y.; Guo, X.-J.; Li, J.-Y.; Zhang, L.; Li, Q.-N.; Zhao, X.-Y.; Ye, B.-J.; Wang, D.-L.; Shen, F.; Ma, H.-J. Energy Environ. Sci. 2019, 12, 1979.
[66]
Ao, J.-X.; Zhang, H.-J.; Xu, X.; Yao, F.-J.; Ma, L.; Zhang, L.; Ye, B.-J.; Li, Q.-N.; Xu, L.; Ma, H.-J. RSC Adv. 2019, 9, 28588.
[67]
Xu, X.; Xu, L.; Ao, J.-X.; Liang, Y.-L.; Li, C.; Wang, Y.-J.; Huang, C.; Ye, F.; Li, Q.-N.; Guo, X.-J.; Li, J.-Y.; Wang, H.-T.; Ma, S.-Q.; Ma, H.-J. J. Mater. Chem. A 2020, 8, 22032.
[68]
Huang, C.; Xu, L.; Xu, X.; Ma, L.; Bao, H.-L.; Liao, J.; Wang, J.-J.; Han, J.-G.; Xu, G.; Huang, D.-M.; Ye, B.-J.; Zhang, H.-J.; Wu, M.-H.; Zhao, X.-Y.; Ma, H.-J. Chem. Eng. J. 2022, 443, 136312.
[69]
Huang, C.; Fu, M.-T.; Ma, L.; Mao, C.-K.; Yao, Y.-Y.; Xu, X.; Xu, L.; Han, J.-G.; Xue, X.-G.; Xu, G.; Wu, M.-H.; Shao, H.-Y.; Ma, H.-J. Chem. Eng. J. 2023, 474, 145718.
[70]
Fu, M.-T.; Han, L.; Huang, C.; Ma, L.; Yao, Y.-Y.; Chen, K.; Sun, P.; Shao, H.-Y.; Wu, M.-H.; Zhang, B.-W.; Ma, H.-J. Chem. Eng. J. 2023, 477, 147103.
[71]
Fu, M.-T.; Huang, C.; Ma, L.; Yao, Y.-Y.; Chen, J.; Han, L.; Chen, K.; Sun, P.; Wu, M.-H.; Ma, H.-J. Sep. Purif. Technol. 2024, 332, 125803.
[72]
Bai, Z.-H.; Liu, Q.; Zhang, H.-S.; Liu, J.-Y.; Yu, J.; Wang, J. Chem. Eng. J. 2020, 382, 122555.
[73]
Wang, Y.; Lin, Z.-W.; Yu, J.; Zhu, J.-H.; Liu, J.-Y.; Liu, Q.; Chen, R.-R.; Liu, P.-L.; Wang, J. J. Environ. Chem. Eng. 2023, 11, 109277.
[74]
Yu, Y.; Liu, J.-Y.; Liu, Q.; Chen, R.-R.; Yu, J.; Zhu, J.-H.; Wang, J. Desalination 2023, 565, 116828.
[75]
Zhao, Y.-S.; Liu, C.-X.; Feng, M.; Chen, Z.; Li, S.-Q.; Tian, G.; Wang, L.; Huang, J.-B.; Li, S.-J. J. Hazard. Mater. 2010, 176, 119.
[76]
Kim, J. H.; Lee, H. I.; Yeon, J.-W.; Jung, Y.; Kim, J. M. J. Radioanal. Nucl. Chem. 2010, 286, 129.
[77]
Wang, Y.-Q.; Zhang, Z.-B.; Liu, Y.-H.; Cao, X.-H.; Liu, Y.-T.; Li, Q. Chem. Eng. J. 2012, 198-199, 246.
[78]
Tian, G.; Geng, J.-X.; Jin, Y.-D.; Wang, C.-L.; Li, S.-Q.; Chen, Z.; Wang, H.; Zhao, Y.-S.; Li, S.-J. J. Hazard. Mater. 2011, 190, 442.
[79]
Schierz, A.; Z?nker, H. Environ. Pollut. 2009, 157, 1088.
[80]
Wang, Y.; Gu, Z.-X.; Yang, J.-J.; Liao, J.-L.; Yang, Y.-Y.; Liu, N.; Tang, J. Appl. Surf. Sci. 2014, 320, 10.
[81]
Tian, K.; Wu, J.-L.; Wang, J.-L. Radiochim. Acta 2018, 106, 719.
[82]
Zhang, Y.-M.; Zhang, H.-S.; Liu, Q.; Chen, R.-R.; Liu, J.-Y.; Yu, J.; Jing, X.-Y.; Zhang, M.-L.; Wang, J. Dalton Trans. 2018, 47, 12984.
[83]
Huang, Z.-W.; Li, Z.-J.; Zheng, L.-R.; Zhou, L.-M.; Chai, Z.-F.; Wang, X.-L.; Shi, W.-Q. Chem. Eng. J. 2017, 328, 1066.
[84]
Yuan, Y.-H.; Niu, B.-Y.; Yu, Q.-H.; Guo, X.; Guo, Z.-H.; Wen, J.; Liu, T.; Zhang, H.-Q.; Wang, N. Angew. Chem.-Int. Ed. 2020, 59, 1220.
[85]
Zhou, H.-C.; Long, J. R.; Yaghi, O. M. Chem. Rev. 2012, 112, 673.
[86]
Furukawa, H.; Cordova, K. E.; O’Keeffe, M.; Yaghi, O. M. Science 2013, 341, 1230444.
[87]
Cohen, S. M. Chem. Rev. 2012, 112, 970.
[88]
Liu, D.-H.; Zhong, C.-L. J. Mater. Chem. 2010, 20, 10308.
[89]
Carboni, M.; Abney, C. W.; Liu, S.-B.; Lin, W.-B. Chem. Sci. 2013, 4, 2396.
[90]
Chen, L.; Bai, Z.-L.; Zhu, L.; Zhang, L.-J.; Cai, Y.-W.; Li, Y.-X.; Liu, W.; Wang, Y.-L.; Chen, L.-H.; Diwu, J.; Wang, J.-Q.; Chai, Z.-F.; Wang, S.-A. ACS Appl. Mater. Interfaces 2017, 9, 32446.
[91]
Ma, L.; Gao, J.; Huang, C.; Xu, X.; Xu, L.; Ding, R.-H.; Bao, H.-L.; Wang, Z.-Q.; Xu, G.; Li, Q.-N.; Deng, P.-Y.; Ma, H.-J. ACS Appl. Mater. Interfaces 2021, 13, 57831.
[92]
Ma, L.; Huang, C.; Yao, Y.-Y.; Fu, M.-T.; Han, F.; Li, Q.-N.; Wu, M.-H.; Zhang, H.-J.; Xu, L.; Ma, H.-J. Sep. Purif. Technol. 2023, 314, 123526.
[93]
Yuan, Y.-H.; Feng, S.-W.; Feng, L.-J.; Yu, Q.-H.; Liu, T.-T.; Wang, N. Angew. Chem., Int. Ed. 2020, 59, 4262.
[94]
Wu, H.-Y.; Chi, F.-T.; Zhang, S.; Wen, J.; Xiong, J.; Hu, S. Microporous Mesoporous Mater. 2019, 288, 109567.
[95]
Zeng, Y.-Y.; Ni, Y.-R.; Liu, S.; Xu, J.-C.; Zhang, A.; Song, Y.-X.; Yang, L.; Pu, A.-L.; Li, X.-Y.; Lv, L.-N.; Yuanli, L.; Chi, F.-T. Microporous Mesoporous Mater. 2022, 343, 112123.
[96]
Qin, X.-F.; Yang, W.-T.; Yang, Y.-H.; Gu, D.-X.; Guo, D.-Y.; Pan, Q.-H. Inorg. Chem. 2020, 59, 9857.
[97]
Li, N.; Yang, L.; Su, R.-D.; Shi, N.; Wu, J.-K.; Zhao, J.; Wen, L.-P.; Wang, Z.-N. Desalination 2023, 566, 116940.
[98]
Zhao, Z.-W.; Lei, R.-C.; Zhang, Y.-Z.; Cai, T.-T.; Han, B. J. Mol. Liq. 2022, 367, 120514.
[99]
Feng, L.-J.; Wang, H.; Feng, T.-T.; Yan, B.-J.; Yu, Q.-H.; Zhang, J.-C.; Guo, Z.-H.; Yuan, Y.-H.; Ma, C.-X.; Liu, T.; Wang, N. Angew. Chem., Int. Ed. 2022, 61, e202101015.
[100]
Bai, Z.-Y.; Liu, Q.; Zhang, H.-S.; Yu, J.; Chen, R.-R.; Liu, J.-Y.; Song, D.-L.; Li, R.-M.; Wang, J. ACS Appl. Mater. Interfaces 2020, 12, 18012.
[101]
Xie, Y.; Chen, C.-L.; Ren, X.-M.; Wang, X.-X.; Wang, H.-Y.; Wang, X.-K. Prog. Mater. Sci. 2019, 103, 180.
[102]
Li, J.; Yang, X.-D.; Bai, C.-Y.; Tian, Y.; Li, B.; Zhang, S.; Yang, X.-Y.; Ding, S.-D.; Xia, C.-Q.; Tan, X.-Y.; Ma, L.-J.; Li, S.-J. J. Colloid Interface Sci. 2015, 437, 211.
[103]
Yu, J.-P.; Yuan, L.-Y.; Wang, S.; Lan, J.-H.; Zheng, L.-R.; Xu, C.; Chen, J.; Wang, L.; Huang, Z.-W.; Tao, W.-Q.; Liu, Z.-R.; Chai, Z.-F.; Gibson, J. K.; Shi, W.-Q. CCS Chem. 2019, 1, 286.
[104]
Li, Z.-D.; Zhang, H.-Q.; Xiong, X.-H.; Luo, F. J. Solid State Chem. 2019, 277, 484.
[105]
Xiong, X.-H.; Yu, Z.-W.; Gong, L.-L.; Tao, Y.; Gao, Z.; Wang, L.; Yin, W.-H.; Yang, L.-X.; Luo, F. Adv. Sci. 2019, 6, 1900547.
[106]
Liang, Y.; Xia, M.; Yu, Q.-H.; Li, Y.-P.; Sui, Z.-Y.; Yuan, Y.-H.; Hu, X.-M.; Chen, Q.; Wang, N. Adv. Compos. Hybrid Mater. 2022, 5, 184.
[107]
Li, Z.-Y.; Zhu, R.-M.; Zhang, P.-L.; Yang, M.; Zhao, R.-Q.; Wang, Y.-L.; Dai, X.; Liu, W. Chem. Eng. J. 2022, 434, 134623.
[108]
Li, F.-F.; Cui, W.-R.; Jiang, W.; Zhang, C.-R.; Liang, R.-P.; Qiu, J.-D. J. Hazard. Mater. 2020, 392, 122333.
[109]
Cui, W.-R.; Zhang, C.-R.; Jiang, W.; Li, F.-F.; Liang, R.-P.; Liu, J.-W.; Qiu, J.-D. Nat. Commun. 2020, 11, 436.
[110]
Eloy, F.; Lenaers, R. Chem. Rev. 1962, 62, 155.
[111]
Witte, E. G.; Schwochau, K. S.; Henkel, G.; Krebs, B. Inorg. Chim. Acta 1984, 94, 323.
[112]
Hirotsu, T.; Katoh, S.; Sugasaka, K.; Senō, M.; Itagaki, T. J. Chem. Soc., Dalton Trans. 1986, 1609.
[113]
Park, Y.-Y.; Kim, S.-Y.; Kim, J.-S.; Harada, M.; Tomiyasu, H.; Nogami, M.; Ikeda, Y. J. Nucl. Sci. Technol. 2000, 37, 344.
[114]
Barber, P. S.; Kelley, S. P.; Rogers, R. D. RSC Adv. 2012, 2, 8526.
[115]
Vukovic, S.; Watson, L. A.; Kang, S. O.; Custelcean, R.; Hay, B. P. Inorg. Chem. 2012, 51, 3855.
[116]
Abney, C. W.; Liu, S.-B.; Lin, W.-B. J. Phys. Chem. A 2013, 117, 11558.
[117]
Zhang, L.-J.; Su, J.; Yang, S.-T.; Guo, X.-J.; Jia, Y.-P.; Chen, N.; Zhou, J.; Zhang, S.; Wang, S.-A.; Li, J.; Li, J.-Y.; Wu, G.-Z.; Wang, J.-Q. Ind. Eng. Chem. Res. 2016, 55, 4224.
[118]
Guo, X.-J.; Wang, Y.-X.; Li, C.; Huai, P.; Wu, G.-Z. Mol. Phys. 2015, 113, 1327.
[119]
Mehio, N.; Lashely, M. A.; Nugent, J. W.; Tucker, L.; Correia, B.; Do-Thanh, C.; Dai, S.; Hancock, R. D.; Bryantsev, V. S. J. Phys. Chem. B 2015, 119, 3567.
[120]
Lashley, M. A.; Mehio, N.; Nugent, J. W.; Holguin, E.; Do-Thanh, C.-L.; Bryantsev, V. S.; Dai, S.; Hancock, R. D. Polyhedron 2016, 109, 81.
[121]
Abney, C. W.; Mayes, R. T.; Piechowicz, M.; Lin, Z.; Bryantsev, V. S.; Veith, G. M.; Dai, S.; Lin, W. Energy Environ. Sci. 2016, 9, 448.
[122]
Kelley, S. P.; Barber, P. S.; Mullins, P. H. K.; Rogers, R. D. Chem. Commun. 2014, 50, 12504.
[123]
Song, Y.-P.; Zhu, C.-J.; Sun, Q.; Aguila, B.; Abney, C. W.; Wojtas, L.; Ma, S.-Q. ACS Cent. Sci. 2021, 7, 1650.
[124]
Kobuke, Y.; Tanaka, H.; Ogoshi, H. Polym. J. 1990, 22, 179.
[125]
Tian, G.-X.; Teat, S. J.; Zhang, Z.-Y.; Rao, L.-F. Dalton Trans. 2012, 41, 11579.
[126]
Tian, G.-X.; Teat, S. J.; Rao, L.-F. Dalton Trans. 2013, 42, 5690.
[127]
Kang, S. O.; Vukovi?, S.; Custelcean, R.; Hay, B. P. Ind. Eng. Chem. Res. 2012, 51, 6619.
[128]
Chatterjee, S.; Bryantsev, V. S.; Brown, S. S.; Johnson, J. C.; Grant, C. D.; Mayes, R. T.; Hay, B. P.; Dai, S.; Saito, T. Ind. Eng. Chem. Res. 2016, 55, 4161.
[129]
Grant, C. D.; Kang, S. O.; Hay, B. P. J. Org. Chem. 2013, 78, 7735.
[130]
Sun, X.-Q.; Tian, G.-X.; Xu, C.; Rao, L.-F.; Vukovic, S.; Kang, S. O.; Hay, B. P. Dalton Trans. 2014, 43, 551.
[131]
Ivanov, A. S.; Leggett, C. J.; Parker, B. F.; Zhang, Z.; Arnold, J.; Dai, S.; Abney, C. W.; Bryantsev, V. S.; Rao, L.-F. Nat. Commun. 2017, 8, 1560.
[132]
Meng, Y.-J.; Wang, Y.-D.; Liu, L.-J.; Ma, F.-Q.; Zhang, C.-H.; Dong, H.-X. Sep. Purif. Technol. 2022, 291, 120946.
[133]
Li, Y.; Li, X.-X.; Wang, Z.-Y.; Zhang, F.; Wu, Q.; Sha, L.-T.; Wang, Y.; Yan, Z.-Y. Sep. Purif. Technol. 2022, 302, 122115.
[134]
Xiao, F.; Cheng, Y.-X.; Zhou, P.-C.; Chen, S.-X.; Wang, X.-J.; He, P.; Nie, X.-Q.; Dong, F.-Q. J. Environ. Chem. Eng. 2021, 9, 105681.
[135]
Xiong, J.; Hu, S.; Liu, Y.; Yu, J.; Yu, H.-Z.; Xie, L.; Wen, J.; Wang, X.-L. ACS Sustain. Chem. Eng. 2017, 5, 1924.
[136]
Ahmad, Z.; Li, Y.; Ali, S.; Yang, J.-J.; Jan, F.; Fan, Y.; Gou, X.-Y.; Sun, Q.-Y.; Chen, J.-P. Chem. Eng. J. 2022, 441, 136076.
[137]
Priest, C. W.; Li, B.; Jiang, D. e. J. Phys. Chem. B 2018, 122, 12060.
[138]
Sun, Q.; Aguila, B.; Perman, J.; Ivanov, A. S.; Bryantsev, V. S.; Earl, L. D.; Abney, C. W.; Wojtas, L.; Ma, S.-Q. Nat. Commun. 2018, 9, 1644.
[139]
Yu, B.-X.; Zhang, L.; Ye, G.; Liu, Q.-Z.; Li, J.-L.; Wang, X.-D.; Chen, J.; Xu, S.-M.; Ma, S.-Q. Nano Res. 2021, 14, 788.
[140]
Ivanov, A. S.; Bryantsev, V. S. Dalton Trans. 2016, 45, 10744.
[141]
Luan, X.-F.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Xia, L.-S.; Shi, W.-Q. J. Phys. Chem. A 2022, 126, 406.
[142]
Gan, J.-L.; Zhang, L.-Y.; Wang, Q.-L.; Xin, Q.; Hu, E.-M.; Lei, Z.-W.; Wang, H.-Q.; Wang, H.-Q. Desalination 2023, 545, 116154.
[143]
Gan, J.-L.; Zhang, L.-Y.; Wang, Q.-L.; Xin, Q.; Xiong, Y.; Hu, E.-M.; Lei, Z.-W.; Wang, H.-Q.; Wang, H.-Q. Int. J. Biol. Macromol. 2023, 238, 124074.
[144]
Wen, D.; Dong, Z.; Ao, Y.-Y.; Xie, K.-J.; Zhai, M.-L.; Zhao, L. Carbohydr. Polym. 2021, 257, 117666.
[145]
Wang, Y.; Lin, Z.-W.; Zhu, J.-H.; Liu, J.-Y.; Yu, J.; Liu, Q.; Chen, R.-R.; Li, Y.; Wang, J. J. Hazard. Mater. 2022, 437, 129407.
[146]
Yang, H.-C.; Guo, X.-J.; Chen, R.-R.; Liu, Q.; Liu, J.-Y.; Yu, J.; Lin, C.-G.; Wang, J.; Zhang, M.-l. Appl. Surf. Sci. 2020, 525, 146611.
[147]
Melton, D. L.; VanDerveer, D. G.; Hancock, R. D. Inorg. Chem. 2006, 45, 9306.
[148]
Ballance, D. G.; Bryantsev, V. S.; Ivanov, A. S.; Dai, S.; Hancock, R. D. Inorg. Chim. Acta 2019, 488, 19.
[149]
Chen, B.-H.; Liu, J.; Lv, L.-N.; Yang, L.; Luo, S.-Z.; Yang, Y.-Q.; Peng, S.-M. Inorg. Chem. 2019, 58, 7416.
[150]
Lipin, R.; Ebenezer, C.; Solomon, R. V. J. Mol. Liq. 2021, 332, 115819.
[151]
Meng, R.-X.; Xu, L.; Yang, X.; Sun, M.-Z.; Xu, C.; Borisova, N. E.; Zhang, X.-W.; Lei, L.-C.; Xiao, C.-L. Inorg. Chem. 2021, 60, 8754.
[152]
Lashley, M. A.; Ivanov, A. S.; Bryantsev, V. S.; Dai, S.; Hancock, R. D. Inorg. Chem. 2016, 55, 10818.
[153]
Luan, X.-F.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Xia, L.-S.; Shi, W.-Q. Dalton Trans. 2022, 51, 11381.
[154]
Luan, X.-F.; Wang, C.-Z.; Xia, L.-S.; Shi, W.-Q. Acta Chim. Sinica 2022, 80, 708. (in Chinese)
[154]
(栾雪菲, 王聪芝, 夏良树, 石伟群, 化学学报, 2022, 80, 708.)
[155]
Ivanov, A. S.; Parker, B. F.; Zhang, Z.-Z.; Aguila, B.; Sun, Q.; Ma, S.-Q.; Jansone-Popova, S.; Arnold, J.; Mayes, R. T.; Dai, S.; Bryantsev, V. S.; Rao, L.-F.; Popovs, I. Nat. Commun. 2019, 10, 819.
[156]
Mizumachi, T.; Sato, M.; Kaneko, M.; Takeyama, T.; Tsushima, S.; Takao, K. Inorg. Chem. 2022, 61, 6175.
[157]
Takao, K.; Kato, M.; Takao, S.; Nagasawa, A.; Bernhard, G.; Hennig, C.; Ikeda, Y. Inorg. Chem. 2010, 49, 2349.
[158]
Xu, H.; Wang, C.-Z.; Wu, Q.-Y.; Lan, J.-H.; Chai, Z.-F.; Liu, Z.-R.; Shi, W.-Q. J. Mol. Liq. 2024, 399, 124411.
文章导航

/