聚环氧乙烷固态聚合物电解质基室温固态锂金属电池的研究进展
收稿日期: 2024-02-22
网络出版日期: 2024-04-02
基金资助
国家重点研发计划(2023YFC2812700); 国家自然科学基金(52073298); 国家自然科学基金(52273221); 中国科学院青年创新促进会(2020217); 青岛新能源山东省实验室开放课题(QNESLOP202312)
Research Progress on Room-temperature Solid-state Lithium Metal Batteries with Poly(ethylene oxide)-based Solid Polymer Electrolytes
Received date: 2024-02-22
Online published: 2024-04-02
Supported by
National Key R&D Program of China(2023YFC2812700); National Natural Science Foundation of China(52073298); National Natural Science Foundation of China(52273221); Youth Innovation Promotion Association of the Chinese Academy of Sciences(2020217); Qingdao New Energy Shandong Laboratory Open Project(QNESLOP202312)
锂离子电池已被广泛应用于国民经济的诸多领域, 然而采用液态电解液的锂离子电池可能会存在电解液泄漏、挥发、燃烧甚至爆炸等潜在安全隐患. 相对比而言, 采用固态电解质的固态锂电池具有高安全特性, 已成为科研界和产业界研发的热点和重点. 作为固态锂电池的核心部件, 固态电解质至关重要. 聚环氧乙烷(PEO)固态聚合物电解质(SPE)具有较高的柔韧性、优良的加工性和良好的界面接触性, 且与锂金属负极兼容性好, 是固态锂金属电池(SSLB)相对理想的电解质材料. 但PEO固态聚合物电解质室温离子电导率偏低, 严重制约了其在室温固态聚合物锂金属电池领域的进一步广泛发展和应用. 经过国内外科研人员等的不断努力, 截至目前PEO固态聚合物电解质基室温SSLB已经取得了相当大的研究进展. 从纳米填料复合、三维(3D)骨架增强、分子水平调节、与其他聚合物共混及正极内部构建离子快速传输通道等策略出发, 对PEO固态聚合物电解质用于室温SSLB的研究进展进行了详细阐述. 最后还对PEO固态聚合物电解质基室温SSLB所面临的挑战以及未来发展趋势进行了系统展望.
张仕杰 , 王朵 , 崔浩然 , 张雅岚 , 张浩 , 苑志祥 , 韩鹏献 , 姚树玉 , 黄浪 , 张建军 , 崔光磊 . 聚环氧乙烷固态聚合物电解质基室温固态锂金属电池的研究进展[J]. 化学学报, 2024 , 82(6) : 690 -706 . DOI: 10.6023/A24020061
Lithium-ion batteries are widely used in various fields of the national economy. However, those with liquid electrolytes may pose potential safety hazards, such as electrolytes leakage, volatilisation, combustion and even explosion. In contrast, solid-state lithium batteries with solid electrolyte exhibit high safety characteristics and have become a research and development hotspot in the scientific and industrial sectors. The design and development of solid-state electrolytes are crucial for solid-state lithium batteries. Poly(ethylene oxide) (PEO) solid polymer electrolyte (SPE) is an excellent electrolyte material for solid-state lithium-metal batteries (SSLBs) due to its high flexibility, excellent processability, good interfacial contact and compatibility with lithium-metal anode. However, the low room temperature ionic conductivity of PEO-based solid polymer electrolytes has seriously restricted its further development and application in the field of room temperature solid polymer lithium metal batteries. Through the continuous efforts of researchers at home and abroad, considerable progress has been made in the development of room-temperature solid-state lithium metal batteries SSLBs with PEO-based solid polymer electrolytes. A detailed description of the research progress room-temperature SSLBs with PEO-based solid-state polymer electrolytes is provided. The strategies covered include nanofiller composites, three-dimensional (3D) skeleton enhancement, molecular level modulation, blending with other polymers, and constructing fast ion transport channels inside the cathode. Finally, a systematic outlook on the challenges and future development trends room-temperature SSLBs with PEO-based solid polymer electrolyte are presented.
[1] | Chang, W.-Y.; Tan, Y.-Y.; Wu, J.-Y.; Liu, Y.-J.; Cai, J.-H.; Lai, C.-Y. Acta Chim. Sinica 2023, 81, 1708. (in Chinese) |
[1] | (常婉莹, 谭莹瑛, 吴静怡, 刘英杰, 蔡金海, 赖春艳, 化学学报, 2023, 81, 1708.) |
[2] | Zhang, C.-M.; Huang, Z.; Yang, Y.; Wang, D.; He, D.-N. Chin. J. Org. Chem. 2014, 34, 1347. (in Chinese) |
[2] | (张春明, 黄昭, 杨扬, 王丹, 何丹农, 有机化学, 2014, 34, 1347.) |
[3] | Zhang, Y.; Lai, J.; Gong, Y.; Hu, Y.; Liu, J.; Sun, C.; Wang, Z.-L. ACS Appl. Mater. Interfaces 2016, 8, 34309. |
[4] | Manthiram, A.; Yu, X.; Wang, S. Nat. Rev. Mater. 2017, 2, 1. |
[5] | Sun, C.; Liu, J.; Gong, Y.; Wilkinson, D. P.; Zhang, J. Nano Energy 2017, 33, 363. |
[6] | Liao, M.-H.; Yang, D.-X.; Zhou, Y.; Wan, R.-J.; Liu, R.-P.; Wang, Q. Energy Storage Sci. Technol. 2022, 11, 3090. (in Chinese) |
[6] | (廖敏会, 杨大祥, 周洋, 万仁杰, 刘瑞平, 王强, 储能科学与技术, 2022, 11, 3090.) |
[7] | Kang, S.-S.; Yang, C.-X.; Yang, Z.-L.; Wu, N.-N.; Zhao, S.; Chen, X.-T.; Liu, F.-L.; Shi, B. Acta Chim. Sinica 2020, 78, 1441. (in Chinese) |
[7] | (康树森, 杨程响, 杨泽林, 吴宁宁, 赵姗, 陈晓涛, 刘富亮, 石斌, 化学学报, 2020, 78, 1441.) |
[8] | Zhao, R.-T.; Yang, J.-X.; Wang, B.; Ma, Z.; Pan, L.; Li, Y.-S. Chin. J. Chem. 2023, 41, 2493. |
[9] | Tian, S.-W.; Zhou, L.-X.; Zhang, B.-Q.; Zhang, J.-J.; Du, X.-F.; Zhang, H.; Hu, S.-J.; Yuan, Z.-X.; Han, P.-X.; Li, S.-L.; Zhao, W.; Zhou, X.-H.; Cui, G.-L. Acta Chim. Sinica 2022, 80, 1410. (in Chinese) |
[9] | (田宋炜, 周丽雪, 张秉乾, 张建军, 杜晓璠, 张浩, 胡思伽, 苑志祥, 韩鹏献, 李素丽, 赵伟, 周新红, 崔光磊, 化学学报, 2022, 80, 1410.) |
[10] | Chen, C.; Li, Q.; Li, Y.; Cui, Z.; Guo, X.; Li, H. ACS Appl. Mater. Interfaces 2018, 10, 2185. |
[11] | Hammami, A.; Raymond, N.; Armand, M. Nature. 2003, 424, 635. |
[12] | Zheng, Y.-S.; Wang, Y.-Y.; Gui, J.-Q.; Xie, Z.-H.; Xu, Y.; Cao, Q.-Y.; Xu, Y.-H.; Liu, Y.-L.; Liang, Y.-R. Energy Storage Sci. Technol. 2023, 12, 3064. (in Chinese) |
[12] | (郑衍森, 王泳茵, 桂久青, 谢卓豪, 徐越, 曹巧英, 徐悦华, 刘应亮, 梁业如, 储能科学与技术, 2023, 12, 3064.) |
[13] | Zhang, Z.; Zhao, Y.; Chen, S.; Xie, D.; Yao, X.; Cui, P.; Xu, X. J. Mater. Chem. A 2017, 5, 16984. |
[14] | Koerver, R.; Aygu?n, I.; Leichtwei?, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. R. Chem. Mater. 2017, 29, 5574. |
[15] | Zhang, B.; Tan, R.; Yang, L.; Zheng, J.; Zhang, K.; Mo, S.; Lin, Z.; Pan, F. Energy Storage Mater. 2018, 10, 139. |
[16] | Zhang, J.-B.; Wang, Y.-P. Energy Environ. 2023, 4, 2. (in Chinese) |
[16] | (张钧波, 王娱飘, 能源与环境, 2023, 4, 2.) |
[17] | Zhai, Y.-F.; Yang, G.-M.; Hou, W.-Y.; Yao, J.-Y.; Wen, Z.-Y.; Song, S.-F.; Hu, N. Energy Storage Sci. Technol. 2021, 10, 905. (in Chinese) |
[17] | (翟艳芳, 杨冠明, 侯望墅, 姚建尧, 温兆银, 宋树丰, 胡宁, 储能科学与技术, 2021, 10, 905.) |
[18] | Bao, J.; Qu, X.; Qi, G.; Huang, Q.; Wu, S.; Tao, C.; Gao, M.; Chen, C. Solid State Ionics 2018, 320, 55. |
[19] | Huang, Z.; Pang, W.; Liang, P.; Jin, Z.; Grundish, N.; Li, Y.; Wang, C.-A. J. Mater. Chem. A 2019, 7, 16425. |
[20] | Samsinger, R.; Schopf, S.; Schuhmacher, J.; Treis, P.; Schneider, M.; Roters, A.; Kwade, A. J. Electrochem. Soc. 2020, 167, 120538. |
[21] | Diddens, D.; Heuer, A.; Borodin, O. Macromolecules 2010, 43, 2028. |
[22] | Zheng, J.; Tang, M.; Hu, Y. Y. Angew. Chem., Int. Ed. 2016, 55, 12538. |
[23] | Cheng, X.-B.; Zhang, R.; Zhao, C.-Z.; Zhang, Q. Chem. Rev. 2017, 117, 10403. |
[24] | Hou, W.; Guo, X.; Shen, X.; Amine, K.; Yu, H.; Lu, J. Nano Energy 2018, 52, 279. |
[25] | Zhen, R.; Chi, Q.-W.; Wang, X.-Y.; Yang, K.; Jiang, Y.-S.; Li, F.-F.; Xue, B. Acta Polym. Sin. 2017, 8, 1312. (in Chinese) |
[25] | (甄冉, 迟茜文, 王星元, 杨阔, 蒋引珊, 李芳菲, 薛兵, 高分子学报, 2017, 8, 1312.) |
[26] | Masoud, E. M.; El-Bellihi, A.-A.; Bayoumy, W.; Mousa, M. J. Alloys Compd. 2013, 575, 223. |
[27] | Wetjen, M.; Navarra, M. A.; Panero, S.; Passerini, S.; Scrosati, B.; Hassoun, J. ChemSusChem 2013, 6, 1037. |
[28] | Gu, D.-M.; Li, Y.-C.; Yang, L.; Xiao, Y. Acta Chim. Sinica 2010, 68, 2367. (in Chinese) |
[28] | (顾大明, 李已才, 杨柳, 肖宇, 化学学报, 2010, 68, 2367.) |
[29] | Stephan, A. M.; Nahm, K. Polymer 2006, 47, 5952. |
[30] | Chen, G.-R.; Shi, P.-F.; Bai, Y.-P.; Fan, T.-B. Acta Chim. Sinica 2004, 62, 377. (in Chinese) |
[30] | (陈国荣, 史鹏飞, 白永平, 范太炳, 化学学报, 2004, 62, 377.) |
[31] | Liu, L.; Chu, L.; Jiang, B.; Li, M. Solid State Ionics 2019, 331, 89. |
[32] | Zhou, Q.; Li, Q.; Liu, S.; Yin, X.; Huang, B.; Sheng, M. J. Power Sources 2021, 482, 228929. |
[33] | Wang, J.; Yang, J.; Shen, L.; Guo, Q.; He, H.; Yao, X. ACS Appl. Energy Mater. 2021, 4, 4129. |
[34] | Xu, L.; Li, J.; Deng, W.; Shuai, H.; Li, S.; Xu, Z.; Li, J.; Hou, H.; Peng, H.; Zou, G. Adv. Energy Mater. 2021, 11, 2000648. |
[35] | Li, S.; Zhang, S. Q.; Shen, L.; Liu, Q.; Ma, J. B.; Lv, W.; He, Y. B.; Yang, Q. H. Adv. Sci. 2020, 7, 1903088. |
[36] | Luu, V. T.; Nguyen, Q. H.; Park, M. G.; Nguyen, H. L.; Seo, M.-H.; Jeong, S.-K.; Cho, N.; Lee, Y.-W.; Cho, Y.; Lim, S. N.; Jun, Y.-S.; Ahn, W. J. Mater. Res. Technol. 2021, 15, 5849. |
[37] | Fu, C.; Ma, Y.; Zuo, P.; Zhao, W.; Tang, W.; Yin, G.; Wang, J.; Gao, Y. J. Power Sources 2021, 496, 229861. |
[38] | Fu, C.; Zhang, X.; Cui, C.; Zhang, X.; Lou, S.; Ma, Y.; Huo, H.; Gao, Y.; Zuo, P.; Yin, G. Chem. Eng. J. 2022, 432, 134271. |
[39] | Zhang, X.; Fu, C.; Cheng, S.; Zhang, C.; Zhang, L.; Jiang, M.; Wang, J.; Ma, Y.; Zuo, P.; Du, C.; Gao, Y.; Yin, G.; Huo, H. Energy Storage Mater. 2023, 56, 121. |
[40] | Nguyen, H. L.; Luu, V. T.; Nguyen, M. C.; Kim, S. H.; Nguyen, Q. H.; Nungu, N. I.; Jun, Y. S.; Ahn, W. Adv. Funct. Mater. 2022, 32, 2207874. |
[41] | Lv, F.; Liu, K.; Wang, Z.; Zhu, J.; Zhao, Y.; Yuan, S. J. Colloid Interface Sci. 2021, 596, 257. |
[42] | Liu, W.; Liu, N.; Sun, J.; Hsu, P.-C.; Li, Y.; Lee, H.-W.; Cui, Y. Nano Lett. 2015, 15, 2740. |
[43] | Pan, L.; Sun, S.; Yu, G.; Liu, X. X.; Feng, S.; Zhang, W.; Turgunov, M.; Wang, Y.; Sun, Z. Chem. Eng. J. 2022, 449, 137682. |
[44] | Shi, K.; Zheng, D.; Guo, Z.; Yang, Z.; Zhang, W. Sustainable Energy Fuels 2022, 6, 5503. |
[45] | Fan, R.; Liu, C.; He, K.; Ho-Sum Cheng, S.; Chen, D.; Liao, C.; Li, R. K.-Y.; Tang, J.; Lu, Z. ACS Appl. Mater. Interfaces 2020, 12, 7222. |
[46] | Han, Q.; Wang, S.; Jiang, Z.; Hu, X.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 20514. |
[47] | Wang, W.-Z.; Song, R.-F.; Li, T; Xu, R.-N.; Zhao, Y.-C.; Zhang, L. J. Chin. Ceram. Soc. 2022, 50, 47. (in Chinese) |
[47] | (王维哲, 宋瑞丰, 李彤, 徐若楠, 赵元春, 张隆, 硅酸盐学报, 2022, 50, 47.) |
[48] | Han, Q.; Wang, S.; Kong, W.; Ji, B.; Wang, H. Chinese Journal of Chemical Engineering 2023, 54, 257. |
[49] | Li, F.; Su, B.; Shi, L.; Mua, J.; Xu, F.; Wang, J.; Yang, H.; Guo, Z. Ceram. Int. 2023, 49, 26604. |
[50] | Meng, X.; Zhang, D.; Mo, J.; Liu, L.; Yang, T.; Fan, Q.; Zhao, Q.; Zhou, R.; Zhang, M.; Hou, W.; Hu, W.; Zhang, W.; Jin, Y.; Jiang, B.; Chu, L.; Li, M. Appl. Surf. Sci. 2024, 648, 158962. |
[51] | Xia, Y.; Wang, Q.; Liu, Y.; Zhang, J.; Xia, X.; Huang, H.; Gan, Y.; He, X.; Xiao, Z.; Zhang, W. J. Colloid Interface Sci. 2023, 638, 908. |
[52] | Yang, T.-Q.; Wang, C.; Zhang, W.-K.; Xia, Y.; Gan, Y.-P.; Huang, H.; He, X.-P.; Zhang, J. Rare Met. 2022, 41, 1870. |
[53] | Wu, J.; Rao, Z.; Cheng, Z.; Yuan, L.; Li, Z.; Huang, Y. Adv. Energy Mater. 2019, 9, 1902767. |
[54] | Zhou, D.; He, Y.-B.; Liu, R.; Liu, M.; Du, H.; Li, B.; Cai, Q.; Yang, Q.-H.; Kang, F. Adv. Energy Mater. 2015, 5, 1500353. |
[55] | Xiao, L.-J.; Zhang, Y.-P.; Hong, M. Chin. J. Org. Chem. 2023, 43, 949. (in Chinese) |
[55] | (肖丽娟, 张艳平, 洪缪, 有机化学, 2023, 43, 949.) |
[56] | Whiteley, J. M.; Taynton, P.; Zhang, W.; Lee, S. H. Adv. Mater. 2015, 27, 6922. |
[57] | Qi, F.; Sun, Z.; Fan, X.; Wang, Z.; Shi, Y.; Hu, G.; Li, F. Adv. Energy Mater. 2021, 11, 2100387. |
[58] | Wei, Y.; Liu, T. H.; Zhou, W.; Cheng, H.; Liu, X.; Kong, J.; Shen, Y.; Xu, H.; Huang, Y. Adv. Energy Mater. 2023, 13, 2203547. |
[59] | Xue, C.; Jin, D.; Nan, H.; Wei, H.; Chen, H.; Xu, S. J. Power Sources 2020, 449, 227548. |
[60] | Zou, L.; Shi, K.; Liu, H.; Wu, Y.; Xu, T.; Wang, Q.; Chen, Z.; Yang, Z.; Song, R.; Su, J.; Zhang, W. Chem. Eng. J. 2023, 465, 142794. |
[61] | Liu, Y.; Zhao, Y.; Lu, W.; Sun, L.; Lin, L.; Zheng, M.; Sun, X.; Xie, H. Nano Energy 2021, 88, 106205. |
[62] | Xu, S.; Sun, Z.; Sun, C.; Li, F.; Chen, K.; Zhang, Z.; Hou, G.; Cheng, H.-M.; Li, F. Adv. Funct. Mater. 2020, 30, 2007172. |
[63] | Naderkhani, N.; Rostami, S.; Mokhtari, Z.; Mollavali, M.; Nourany, M. Polym. Adv. Technol. 2024, 35, 6319. |
[64] | Ma, J.; Zhong, G.; Shi, P.; Wei, Y.; Li, K.; Chen, L.; Hao, X.; Li, Q.; Yang, K.; Wang, C.; Lv, W.; Yang, Q.-H.; He, Y.-B.; Kang, F. Energy Environ. Sci. 2022, 15, 1503. |
[65] | Wang, J.; Yan, X.; Zhang, Z.; Guo, R.; Ying, H.; Han, G.; Han, W.-Q. ACS Appl. Mater. Interfaces. 2020, 12, 41323. |
[66] | Xue, Z.; He, D.; Xie, X. J. Mater. Chem. A 2015, 3, 19218. |
[67] | Qu, X.-X.; Guo, Y.; Liu, X.-K. Chin. J. Chem. 2022, 40, 2559. |
/
〈 |
|
〉 |