收稿日期: 2024-10-28
网络出版日期: 2024-12-25
基金资助
国家自然科学基金(22271312); 中南大学启动基金和中南大学创新驱动计划项目(2023CXQD047)
Overview on Low-oxidation-state Alkaline Earth Organometallic Chemistry
Received date: 2024-10-28
Online published: 2024-12-25
Supported by
National Natural Science Foundation of China(22271312); start-up funds of Central South University and the Central South University Innovation-Driven Research Programme(2023CXQD047)
低氧化态主族元素化学在主族化学中占据重要地位, 该领域的研究成果不仅可以丰富化学键理论内涵, 而且在金属有机及催化、小分子活化与转化等方面都具有重要意义. 相比于低氧化态p区元素化学, s区中碱土金属元素因电负性较低极易失去两个价电子形成稳定的+2氧化态化合物, 但较难形成具有高活性和强还原性的低氧化态物种, 因此低氧化态碱土金属有机化学的研究充满挑战. 本文概述了低氧化态碱土金属有机化学的发展历程, 简要描述了已发展较为成熟的低氧化态镁化学, 全面介绍了近期取得显著进展的低氧化态铍化学, 重点强调了亟待突破的低氧化态钙、锶和钡化学.
陈荣 , 魏保生 . 低氧化态碱土金属有机化学概述[J]. 化学学报, 2025 , 83(2) : 139 -151 . DOI: 10.6023/A24100325
The chemistry of main group elements with low oxidation states occupies an important position in main group chemistry. Research results in this field can not only enrich the theoretical connotation of chemical bonding, but also have great significance in organometallic chemistry and catalysis, small molecule activation and transformation, etc. Compared with the chemistry of low-oxidation-state p-block elements, the s-block alkaline earth metal elements with low electronegativity can easily lose two valence electrons to form stable +2 oxidation state compounds, but it is more difficult to form low-oxidation-state species with relatively low stability and strong reducing property. Therefore, the study on low-oxidation-state alkaline earth organometallic chemistry is full of challenges. This review outlines the development history of low-oxidation-state alkaline earth organometallic chemistry, briefly describes the relatively mature low-oxidation-state magnesium chemistry, comprehensively introduces the low-oxidation-state beryllium chemistry that has recently made significant progress, highlights the low-oxidation-state calcium, strontium, and barium chemistry that still needs urgent breakthrough.
| [1] | Zhao, L.; Pan, S.; Holzmann, N.; Schwerdtfeger, P.; Frenking, G. Chem. Rev. 2019, 119, 8781. |
| [2] | Jones, C. Nat. Rev. Chem. 2017, 1, 0059. |
| [3] | Chu, T.; Nikonov, G. I. Chem. Rev. 2018, 118, 3608. |
| [4] | Melen, R. L. Science 2019, 363, 479. |
| [5] | (a) Jones, C. Commun. Chem. 2020, 3, 159. |
| [5] | (b) Yadav, S.; Saha, S.; Sen, S. S. ChemCatChem. 2016, 8, 486. |
| [5] | (c) R?sch, B.; Harder, S. Chem. Commun. 2021, 57, 9354. |
| [5] | (d) Freeman, L. A.; Walley, J. E.; Gilliard, R. J. Nat. Synth. 2022, 1, 439. |
| [5] | (e) Harder, S.; Langer, J. Nat. Rev. Chem. 2023, 7, 843. |
| [5] | (f) Gimferrer, M.; Danes, S.; Vos, E.; Yildiz, C. B.; Corral, I.; Jana, A.; Salvador, P.; Andrada, D. M. Chem. Sci. 2022, 13, 6583. |
| [5] | (g) Yadav, R.; Sinhababu, S.; Yadav, R.; Kundu, S. Dalton Trans. 2022, 51, 2170. |
| [5] | (h) Boronski, J. T. Dalton Trans. 2024, 53, 33. |
| [5] | (i) Evans, M. J.; Jones, C. Chem. Soc. Rev. 2024, 53, 5054. |
| [6] | Green, S. P.; Jones, C.; Stasch, A. Science 2007, 318, 1754. |
| [7] | Green, S. P.; Jones, C.; Stasch, A. Angew. Chem., Int. Ed. 2008, 47, 9079. |
| [8] | Liu, Y.; Li, S.; Yang, X.-J.; Yang, P.; Wu, B. J. Am. Chem. Soc. 2009, 131, 4210. |
| [9] | (a) Stasch, A.; Jones, C. Dalton Trans. 2011, 40, 5659. |
| [9] | (b) Jones, C.; Stasch, A. Top. Organomet. Chem. 2013, 45, 73. |
| [9] | (c) Ma, M.; Wang, W.; Yao, W. Chin. J. Org. Chem. 2016, 36, 72 (in Chinese). |
| [9] | (马猛涛, 王未凡, 姚薇薇, 有机化学, 2016, 36, 72.) |
| [10] | Connelly, N. G.; Geiger, W. E. Chem. Rev. 1996, 96, 877. |
| [11] | Wang, W.; Luo, M.; Li, J.; Pullarkat, S. A.; Ma, M. Chem. Commun. 2018, 54, 3042. |
| [12] | Liu, H.-Y.; Schwamm, R. J.; Neale, S. E.; Hill, M. S.; McMullin, C. L.; Mahon, M. F. J. Am. Chem. Soc. 2021, 143, 17851. |
| [13] | Liu, H.-Y.; Neale, S. E.; Hill, M. S.; Mahon, M. F.; McMullin, C. L.; Richards, E. Angew. Chem., Int. Ed. 2023, 62, e202213670. |
| [14] | (a) Ren, W.; Gu, D. Inorg. Chem. 2016, 55, 11962. |
| [14] | (b) Ren, W.; Fang, X.; Sun, W.; Gu, D.; Yu, Y. J. Organomet. Chem. 2017, 842, 47. |
| [14] | (c) Freeman, L. A.; Walley, J. E.; Obi, A. D.; Wang, G.; Dickie, D. A.; Molino, A.; Wilson, D. J. D.; Gilliard, R. J. Inorg. Chem. 2019, 58, 10554. |
| [15] | Kaim, W. Inorg. Chem. 2011, 50, 9752. |
| [16] | Gentner, T. X.; R?sch, B.; Ballmann, G.; Langer, J.; Elsen, H.; Harder, S. Angew. Chem., Int. Ed. 2019, 58, 607. |
| [17] | Pan, J.; Zhang, L.; He, Y.; Yu, Q.; Tan, G. Organometallics 2021, 40, 3365. |
| [18] | (a) J?drzkiewicz, D.; Mai, J.; Langer, J.; Mathe, Z.; Patel, N.; DeBeer, S.; Harder, S. Angew. Chem., Int. Ed. 2022, 61, e202200511. |
| [18] | (b) J?drzkiewicz, D.; Langer, J.; Harder, S. Z. Anorg. Allg. Chem. 2022, 648, e202200138. |
| [19] | R?sch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Harder, S. Nature 2021, 592, 717. |
| [20] | Mondal, R.; Evans, M. J.; Rajeshkumar, T.; Maron, L.; Jones, C. Angew. Chem., Int. Ed. 2023, 62, e202308347. |
| [21] | (a) Buchner, M. R. Chem. Commun. 2020, 56, 8895. |
| [21] | (b) Buchner, M. R. Chem. Eur. J. 2019, 25, 12018. |
| [21] | (c) Perera, L. C.; Raymond, O.; Henderson, W.; Brothers, P. J.; Plieger, P. G. Coord. Chem. Rev. 2017, 352, 264. |
| [21] | (d) Naglav, D.; Buchner, M. R.; Bendt, G.; Kraus, F.; Schulz, S. Angew. Chem., Int. Ed. 2016, 55, 10562. |
| [21] | (e) Iversen, K. J.; Couchman, S. A.; Wilson, D. J. D.; Dutton, J. L. Coord. Chem. Rev. 2015, 297, 40. |
| [21] | (f) Puchta, R. Nat. Chem. 2011, 3, 416. |
| [21] | (g) Couchman, S. A.; Holzmann, N.; Frenking, G.; Wilson, D. J. D.; Dutton, J. L. Dalton Trans. 2013, 42, 11375. |
| [22] | Arrowsmith, M.; Braunschweig, H.; Celik, M. A.; Dellermann, T.; Dewhurst, R. D.; Ewing, W. C.; Hammond, K.; Kramer, T.; Krummenacher, I.; Mies, J.; Radacki, K.; Schuster, J. K. Nat. Chem. 2016, 8, 890. |
| [23] | Paparo, A.; Smith, C. D.; Jones, C. Angew. Chem., Int. Ed. 2019, 58, 11459. |
| [24] | Wang, G.; Walley, J. E.; Dickie, D. A.; Pan, S.; Frenking, G.; Gilliard, R. J. J. Am. Chem. Soc. 2020, 142, 4560. |
| [25] | Czernetzki, C.; Arrowsmith, M.; Fantuzzi, F.; G?rtner, A.; Tr?ster, T.; Krummenacher, I.; Schorr, F.; Braunschweig, H. Angew. Chem., Int. Ed. 2021, 60, 20776. |
| [26] | Czernetzki, C.; Arrowsmith, M.; Endres, L.; Krummenacher, I.; Braunschweig, H. Inorg. Chem. 2024, 63, 2670. |
| [27] | Pearce, K. G.; Hill, M. S.; Mahon, M. F. Chem. Commun. 2023, 59, 1453. |
| [28] | Boronski, J. T.; Crumpton, A. E.; Wales, L. L.; Aldridge, S. Science 2023, 380, 1147. |
| [29] | Boronski, J. T.; Thomas-Hargreaves, L. R.; Ellwanger, M. A.; Crumpton, A. E.; Hicks, J.; Bekis, D. F.; Aldridge, S.; Buchber, M. R. J. Am. Chem. Soc. 2023, 145, 4408. |
| [30] | Boronski, J. T.; Crumpton, A. E.; Roper, A. F.; Aldridge, S. Nat. Chem. 2024, 16, 1295. |
| [31] | Berthold, C.; Maurer, J.; Klerner, L.; Harder, S.; Buchner, M. R. Angew. Chem., Int. Ed. 2024, 63, e202408422. |
| [32] | (a) Westerhausen, M.; Koch, A.; G?rls, H.; Krieck, S. Chem. Eur. J. 2017, 23, 1456. |
| [32] | (b) Wei, B.; Li, H.; Zhang, W.-X.; Xi, Z. Organometallics 2015, 34, 1339. |
| [32] | (c) Wei, B.; Liu, L.; Zhang, W.-X.; Xi, Z. Angew. Chem., Int. Ed. 2017, 56, 9188. |
| [32] | (d) Wei, B.; Zhang, W.-X.; Xi, Z. Dalton Trans. 2018, 47, 12540. |
| [33] | (a) Wilson, A. S. S.; Hill, M. S.; Mahon, M. F.; Dinoi, C.; Maron, L. Science 2017, 358, 1168. |
| [33] | (b) Harder, S. Chem. Rev. 2010, 110, 3852. |
| [33] | (c) Hu, H.; Cui, C. Organometallics 2012, 31, 1208. |
| [33] | (d) Li, H.; Wang, X.-Y.; Wei, B.; Xu, L.; Zhang, W.-X.; Pei, J.; Xi, Z. Nat. Commun. 2014, 5, 4508. |
| [33] | (e) Wei, B.; Li, H.; Zhang, W.-X.; Xi, Z. Organometallics 2016, 35, 1458. |
| [33] | (f) Zhang, X.-Y.; Du, H.-Z.; Zhai, D.-D.; Guan, B.-T. Org. Chem. Front. 2020, 7, 1991. |
| [33] | (g) Li, T.; McCabe, K. N.; Maron, L.; Leng, X.; Chen, Y. ACS Catal. 2021, 11, 6348. |
| [33] | (h) Zheng, X.; Rosal, I.; Xu, X.; Yao, Y.; Maron, L.; Xu, X. Inorg. Chem. 2021, 60, 5114. |
| [34] | (a) Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Science 2018, 361, 912. |
| [34] | (b) Zhao, L.; Pan, S.; Zhou, M.; Frenking, G. Science 2019, 365, 6453. |
| [34] | (c) Zhou, M.; Frenking, G. Acc. Chem. Res. 2021, 54, 3071. |
| [34] | (d) Huo, B.; Sun, R.; Jin, B.; Hu, L.; Bian, J.-H.; Guan, X.-L.; Yuan, C.; Lu, G.; Wu, Y.-B. Chem. Commun. 2021, 57, 5806. |
| [35] | Krieck, S.; G?rls, H.; Yu, L.; Reiher, M.; Westerhausen, M. J. Am. Chem. Soc. 2009, 131, 2977. |
| [36] | Huang, W.; Diaconescu, P. L. Dalton Trans. 2015, 44, 15360. |
| [37] | R?sch, B.; Gentner, T. X.; Langer, J.; F?rber, C.; Eyselein, J.; Zhao, L.; Ding, C.; Frenking, G.; Harder, S. Science 2021, 371, 1125. |
| [38] | (a) Li, J.; Yin, J.; Yu, C.; Zhang, W.; Xi, Z. Acta Chim. Sinica 2017, 75, 733 (in Chinese). |
| [38] | (李嘉鹏, 殷剑昊, 俞超, 张文雄, 席振峰, 化学学报, 2017, 75, 733.) |
| [38] | (b) Ma, X.; Lei, M. Prog. Chem. 2013, 25, 1325 (in Chinese). |
| [38] | (马雪璐, 雷鸣, 化学进展, 2013, 25, 1325.) |
| [38] | (c) Fan, Y.; Cheng, J.; Gao, Y.; Shi, M.; Deng, L. Acta Chim. Sinica 2018, 76, 445 (in Chinese). |
| [38] | (凡一明, 程骏, 高亚飞, 施敏, 邓亮, 化学学报, 2018, 76, 445.) |
| [39] | Mondal, R.; Yuvaraj, K.; Rajeshkumar, T.; Maron, L.; Jones, C. Chem. Commun. 2022, 58, 12665. |
| [40] | (a) Mai, J.; Morasch, M.; J?drzkiewicz, D.; Langer, J.; R?sch, B.; Harder, S. Angew. Chem., Int. Ed. 2023, 62, e202212463. |
| [40] | (b) Mai, J.; R?sch, B.; Langer, J.; Grams, S.; Morasch, M.; Harder, S. Eur. J. Inorg. Chem. 2023, 26, e202300421. |
| [41] | Liu, Y.; Zhu, K.; Chen, L.; Liu, S.; Ren, W. Inorg. Chem. 2022, 61, 20373. |
| [42] | Wu, L.; Wang, Z.; Liu, Y.; Chen, L.; Ren, W. Dalton Trans. 2023, 52, 7175. |
| [43] | (a) Shi, X.; Liu, Z.; Cheng, J. Chin. J. Org. Chem. 2019, 39, 1557 (in Chinese). |
| [43] | (石向辉, 刘知洲, 程建华, 有机化学, 2019, 39, 1557.) |
| [43] | (b) Shi, X.; Qin, G.; Wang, Y.; Zhao, L.; Liu, Z.; Cheng, J. Angew. Chem., Int. Ed. 2019, 58, 4356. |
| [43] | (c) Jochmann, P.; Davin, J. P.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2012, 51, 4452. |
| [43] | (d) Leich, V.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2016, 55, 4794. |
| [43] | (e) Schuhknecht, D.; Lhotzky, C.; Spaniol, T. P.; Maron, L.; Okuda, J. Angew. Chem., Int. Ed. 2017, 56, 12367. |
| [44] | (a) Mai, J.; R?sch, B.; Patel, N.; Langer, J.; Harder, S. Chem. Sci. 2023, 14, 4724. |
| [44] | (b) Mai, J.; Maurer, J.; Langer, J.; Harder, S. Nat. Synth. 2024, 3, 368. |
| [45] | Stegner, P.; F?rber, C.; Zenneck, U.; Knüpfer, C.; Eyselein, J.; Wiesinger, M.; Harder, S. Angew. Chem., Int. Ed. 2021, 60, 4252. |
| [46] | Guan, Y.; Liu, C.; Wang, Q.; Gao, W.; Hansen, H. A.; Guo, J.; Vegge, T.; Chen, P. Angew. Chem., Int. Ed. 2022, 61, e202205805. |
| [47] | Townrow, O. P. E.; F?rber, C.; Zenneck, U.; Harder, S. Angew. Chem., Int. Ed. 2024, 63, e202318428. |
/
| 〈 |
|
〉 |