化学学报 ›› 2025, Vol. 83 ›› Issue (2): 139-151.DOI: 10.6023/A24100325 上一篇    下一篇

综述

低氧化态碱土金属有机化学概述

陈荣, 魏保生*()   

  1. 中南大学 化学化工学院 长沙 410083
  • 投稿日期:2024-10-28 发布日期:2024-12-24
  • 作者简介:

    陈荣, 2023年获延安大学学士学位, 同年保送至中南大学化学化工学院攻读硕士学位, 师从魏保生副教授, 目前主要研究主族金属有机化学.

    魏保生, 副教授, 博士生导师. 2012年获山东大学学士学位, 2017年获北京大学博士学位(导师: 席振峰院士、张文雄教授), 2018~2021年在德国慕尼黑大学化学系从事博士后研究(合作导师: Paul Knochel教授), 2022年起加入中南大学化学化工学院开展教学科研工作. 主要研究金属有机化学、有机合成与催化化学, 近年来在Acc. Chem. Res.、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.等国内外权威期刊发表论文20余篇, 应邀撰写1个英文专著章节, 现担任国际学术期刊Chem. Synth.青年编委, 入选中南大学首批升华学者计划和湖南省高层次人才引进项目.

  • 基金资助:
    国家自然科学基金(22271312); 中南大学启动基金和中南大学创新驱动计划项目(2023CXQD047)

Overview on Low-oxidation-state Alkaline Earth Organometallic Chemistry

Rong Chen, Baosheng Wei()   

  1. College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, China
  • Received:2024-10-28 Published:2024-12-24
  • Contact: E-mail: bswei@csu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22271312); start-up funds of Central South University and the Central South University Innovation-Driven Research Programme(2023CXQD047)

低氧化态主族元素化学在主族化学中占据重要地位, 该领域的研究成果不仅可以丰富化学键理论内涵, 而且在金属有机及催化、小分子活化与转化等方面都具有重要意义. 相比于低氧化态p区元素化学, s区中碱土金属元素因电负性较低极易失去两个价电子形成稳定的+2氧化态化合物, 但较难形成具有高活性和强还原性的低氧化态物种, 因此低氧化态碱土金属有机化学的研究充满挑战. 本文概述了低氧化态碱土金属有机化学的发展历程, 简要描述了已发展较为成熟的低氧化态镁化学, 全面介绍了近期取得显著进展的低氧化态铍化学, 重点强调了亟待突破的低氧化态钙、锶和钡化学.

关键词: 低氧化态, 碱土金属, 金属有机化学, 铍, 镁,

The chemistry of main group elements with low oxidation states occupies an important position in main group chemistry. Research results in this field can not only enrich the theoretical connotation of chemical bonding, but also have great significance in organometallic chemistry and catalysis, small molecule activation and transformation, etc. Compared with the chemistry of low-oxidation-state p-block elements, the s-block alkaline earth metal elements with low electronegativity can easily lose two valence electrons to form stable +2 oxidation state compounds, but it is more difficult to form low-oxidation-state species with relatively low stability and strong reducing property. Therefore, the study on low-oxidation-state alkaline earth organometallic chemistry is full of challenges. This review outlines the development history of low-oxidation-state alkaline earth organometallic chemistry, briefly describes the relatively mature low-oxidation-state magnesium chemistry, comprehensively introduces the low-oxidation-state beryllium chemistry that has recently made significant progress, highlights the low-oxidation-state calcium, strontium, and barium chemistry that still needs urgent breakthrough.

Key words: low oxidation state, alkaline earth metal, organometallic chemistry, beryllium, magnesium, calcium