综述

超薄锂箔制造及其在预锂化中的应用

  • 段续之 ,
  • 陈国栋 ,
  • 石良 ,
  • 董杉木 ,
  • 崔光磊
展开
  • a 青岛科技大学 材料科学与工程学院 青岛 266042
    b 中国科学院青岛生物能源与过程研究所 青岛储能产业技术研究院 青岛 266101
    c 山东能源研究院 青岛 266101
    d 青岛新能源山东省实验室 青岛 266101

段续之, 男, 青岛科技大学材料科学与工程学院硕士, 中国科学院青岛生物能源与过程研究所联合培养研究生. 主要从事锂离子电池负极预锂化、高比能锂金属电池和无负极锂金属电池方面的研究.

石良, 男, 硕士生导师, 青岛科技大学材料科学与工程学院副教授, 于2015年毕业于中国海洋大学海洋化学工程与技术专业, 获理学博士学位. 目前主要从事纳米材料的制备与性能研究.

董杉木, 男, 博士生导师, 青岛生物能源与过程研究所研究员. 于2012年在中国科学院青岛生物能源与过程研究所获得博士学位, 师从崔光磊教授. 之后, 加入该研究所, 继续从事高效储能材料的研究. 目前的研究重点是锂金属电池和固态电解质系统.

崔光磊, 研究员, 博士生导师, 国务院特殊津贴专家, 国家杰青和WR计划, 中科院深海智能技术先导专项副总师(固态电池基深海能源体系), 青岛市储能产业技术研究院院长, 国际聚合物电解质委员会理事. 2005年于中国科学院化学所获得有机化学博士学位, 2005年9月至2009年2月先后在德国马普协会高分子所和固态所从事博士后研究. 2009年2月起于中科院青岛生物能源与过程所工作. 2009年入选中国科学院“百人计划”(终期评估优秀), 2009年获山东省自然科学杰出青年基金资助, 2015年入选山东省“泰山学者特聘专家”, 2016年获国家自然科学杰出青年基金资助, 2018年至2021年, 十三五国家重点研发计划新能源汽车专项, 高比能固态电池项目负责人. 主要从事低成本高效能源储存与转换器件的研究. 作为负责人/课题负责人承担国家自然科学杰出青年基金, 国家973计划, 863计划, 国家自然科学基金面上项目, 省部级及中科院先导专项, 企业横向项目等多项科研项目. 在Nat. Energy、Nat. Sustain、J. Am. Chem. Soc.、Angew. Chem. Int. Ed.、Adv. Mater.等发表论文300余篇, 引用2万余次, 申请国家专利210余项, 授权113项, 申请PCT专利6项, 授权欧洲专利1项, 出版《动力锂电池中聚合物关键材料》一部. 获得2017年青岛市自然科学奖一等奖(第一完成人); 获得2018年山东省自然科学奖一等奖(第一完成人); 获得2021年青岛市科学进步奖一等奖(第一完成人).

收稿日期: 2024-12-02

  网络出版日期: 2025-01-20

基金资助

国家重点研发计划金融科技项目(2022YFB3803400); 国家自然科学基金(22179135); 中国社会科学基金博士后基金(GZC20232806); 山东省自然科学基金(ZR2024QB297); 山东省自然科学基金(ZR2023JQ003); 山东省自然科学基金(ZR2022ZD11); 青岛市博士后基金(QDBSH20240102103); 山东省泰山学者(ts201511063); 山东省青年专家泰山学者项目(tsqn202103145); 青岛新能源山东实验室(QIBEBT/SEI/QNESLS202304)

Fabrication of Ultra-thin Lithium Foil and Application in Pre-lithiation

  • Xuzhi Duan ,
  • Guodong Chen ,
  • Liang Shi ,
  • Shanmu Dong ,
  • Guanglei Cui
Expand
  • a College of Materials Science and Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
    b Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
    c Shandong Energy Institute, Qingdao 266101, China
    d Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
; Tel.: 0532-80662746; Fax: 0532-80662744

Received date: 2024-12-02

  Online published: 2025-01-20

Supported by

Finance Science and technology project of the National Key R&D Program of China(2022YFB3803400); National Natural Science Foundation of China(22179135); Postdoctoral Fellowship Program of CPSF(GZC20232806); Shandong Provincial Natural Science Foundation(ZR2024QB297); Shandong Provincial Natural Science Foundation(ZR2023JQ003); Shandong Provincial Natural Science Foundation(ZR2022ZD11); Qingdao Postdoctoral Funding Program(QDBSH20240102103); Taishan Scholars of Shandong Province(ts201511063); Taishan Scholars Program for Young Expert of Shandong Province(tsqn202103145); Qingdao New Energy Shandong Laboratory(QIBEBT/SEI/QNESLS202304)

摘要

新型超薄锂箔相较于传统锂箔在锂金属电池中表现出更高的能量密度、更好的安全性以及更低的材料成本. 然而, 超薄锂箔的工业生产面临严峻挑战, 主要源于生产过程中可能出现的褶皱和损坏, 以及工艺的复杂性. 因此, 亟需改进或开发新的制造方法以满足工业化需求. 另一方面, 为了提高锂离子电池的首次库伦效率(ICE)和延长循环寿命, 锂箔常用于在电池循环前补充首圈充放电过程中消耗的正极侧活性锂. 然而, 过量锂金属与电解液的副反应会显著影响电池的寿命和安全性. 基于此, 本综述将重点讨论传统锂箔制造所面临的问题, 并结合相关实例分析解决这些问题的具体策略. 同时, 概述新型超薄锂箔制备方法, 并评估其在工业应用中的可行性. 此外, 本文还总结了锂箔在预锂化中的应用, 提出超薄锂箔制造与预锂化相结合的发展趋势. 本综述旨在为该领域的研究人员提供宝贵的见解与启发, 成为推动锂箔制造和应用创新的综合性参考资源.

本文引用格式

段续之 , 陈国栋 , 石良 , 董杉木 , 崔光磊 . 超薄锂箔制造及其在预锂化中的应用[J]. 化学学报, 2025 , 83(2) : 184 -196 . DOI: 10.6023/A24120362

Abstract

Novel ultra-thin lithium foils, present significant advantages over conventional lithium foils in terms of energy density, safety, and material cost reduction for lithium metal batteries. These benefits stem from the enhanced electrochemical performance and efficiency that ultra-thin foils can deliver. However, the industrial production of such foils is fraught with challenges. Key issues include the potential for creases and damage during the manufacturing process, as well as the complexity of the techniques required to produce them at scale. Thus, there is an urgent need to innovate existing manufacturing methods to meet the growing industrial demand for ultra-thin lithium foils. In addition to their manufacturing challenges, ultra-thin lithium foils play a crucial role in enhancing the initial coulomb efficiency (ICE) and extending the cycle life of lithium-ion batteries. They are commonly employed to replenish active lithium on the cathode side, compensating for the lithium consumed during the initial charging and discharging phases. However, excessive lithium metal can lead to side reactions with the electrolyte, negatively affecting battery life and safety. Therefore, careful management of lithium deposition is essential to optimize battery performance while ensuring safety. This review specifically addresses the challenges associated with conventional lithium foil manufacturing, providing a detailed analysis of the underlying issues and proposing targeted strategies to overcome them. Relevant examples from recent research will be presented to illustrate successful approaches. Furthermore, the review explores novel preparation methods for ultra-thin lithium foils, evaluating their feasibility for industrial applications. Additionally, the review will summarize the current use of lithium foils in pre-lithiation processes, emphasizing the trend toward integrating ultra-thin lithium foil manufacturing with these processes. This integration is expected to enhance the performance of lithium batteries while simultaneously addressing manufacturing challenges. Ultimately, this review aims to provide valuable insights and inspiration for researchers in the field, serving as a comprehensive resource to stimulate further innovation in lithium foil manufacturing and application.

参考文献

[1]
Noorden, R.-V. Nature 2014, 507, 26.
[2]
Armand, M.; Tarascon, J.-M. Nature 2008, 451, 652.
[3]
Dunn, B.; Kamath, H.; Tarascon, J.-M. Science 2011, 334, 928.
[4]
Zheng, J.; Kim, M.-S.; Tu, Z.; Choudhury, S.; Tang, T. Chem. Soc. Rev. 2020, 49, 2701.
[5]
Whittingham, M.-S. Chem. Rev. 2014, 114, 11414.
[6]
Xie, H.; Feng, J.; Zhao, H. Energy Storage Mater. 2023, 102918.
[7]
Zhao, W.; Yi, J.; He, P.; Zhou, H. Electrochem. Energy Rev. 2019, 2, 574.
[8]
Manthiram, A.; Yu, X.-W.; Wang, S.-F. Nat. Rev. Mater. 2017, 2, 1.
[9]
Zhang, H.; Eshetu, G.-G.; Judez, X.; Li, C.; Rodriguez-Martinez, L.-M. Angew. Chem. Int. Ed. 2018, 57, 15002.
[10]
Xu, K. Chem. Rev. 2004, 104, 4303.
[11]
Wu, W.-Y.; Luo, W.; Huang, Y.-H. Chem. Soc. Rev. 2023, 52, 2553.
[12]
Guo, Y.-P.; Li, H.-Q.; Zhai, T. Adv. Mater. 2017, 29, 1700007.
[13]
Lin, D.-C.; Liu, Y.-Y.; Cui, Y. Nat. Nanotechnol. 2017, 12, 194.
[14]
Zhan, R.-M.; Wang, X.-C.; Chen, Z.-H.; Seh, Z.-W.; Wang, L.; Sun, Y.-M. Adv. Energy Mater. 2021, 11, 2101565.
[15]
Wang, F.; Wang, B.; Li, J.-X.; Wang, B.; Zhou, Y.; Wang, D.-L.; Liu, H.-K.; Dou, S.-X. ACS Nano 2021, 15, 2197.
[16]
Chen, H.; Yang, Y.; Boyle, D.-T.; Jeong, Y.-K.; Xu, R.; Vasconcelos, L.-S.; Huang, Z.; Wang, H.; Wang, H.; Huang, W.; Li, H.; Wang, J.; Gu, H.; Matsumoto, R.; Motohashi, K.; Nakayama, Y.; Zhao, K.; Cui, Y. Nat. Energy 2021, 6, 790.
[17]
Lu, Q.-Q.; Jie, Y.; Meng, X.-Q.; Omar, A.; Mikhailova, D.; Cao, R.-G.; Jiao, S.-H.; Lu, Y.; Xu, Y.-L. Carbon Energy 2021, 3, 957.
[18]
Huan, Q.-N.; Wang, Y.-L.; Qi, D.-Z.; Chen, Q.; Mu, H.-B. US patent CN209822779-U. 2017.
[19]
Huang, S.-Z.; Wu, Z.-B.; Johannessen, B.; Long, K.-C.; Qing, P.; He, P.; Ji, X.-B.; Wei, W.-F.; Chen, Y.-J.; Chen, L.-B. Nat. Commun. 2023, 14, 5678.
[20]
Luo, Z.; Cao, Y.; Xu, G.-B.; Sun, W.-R.; Xiao, X.-H.; Liu, H.; Wang, S.-S. Carbon Neutral. 2024, 3, 647.
[21]
Liu, S.-F.; Ji, X.; Yue, J.-J.; Hou, S.-Y.; Wang, P.-F.; Cui, C.-Y.; Chen, J.; Shao, B.-W.; Li, J.-R.; Han, F.-D.; Tu, J.-P.; Wang, C.-S. J. Am. Chem. Soc. 2020, 142, 2438.
[22]
Fu, L.; Wang, X.-C.; Zhang, B.; Chen, Z.-H.; Li, Y.-J.; Sun, Y.-M. Nano Res. 2024, 17, 4031.
[23]
Acebedo, B.; Morant‐Mi?ana, M.-C.; Gonzalo, E.; Ruiz de Larramendi, I.; Villaverde, A.; Rikarte, J.; Fallarino, L. Adv. Energy Mater. 2023, 13, 2203744.
[24]
Cui, G.-L.; Wang, Q.-F.; Xu, H.-X.; Dong, S.-M.; Xu, G.-J. CN 107425175-A, 2017.
[25]
Guo, Y.-G.; Wang, S.-H.; Dong, W.; Yin, Y.-X.; Wang, C.-R. US WO2019109398-A1; CN 109873122-A. 2017.
[26]
Wu, B.-L.; Chen, C.-G.; Raijmakers, L.-H.; Liu, J.; Danilov, D.-L.; Eichel, R.-A.; Notten, P.-H. Energy Storage Mater. 2023, 57, 508.
[27]
Xu, H.; Li, S.; Huang, Y.-H.; Yu, Y.; Xie, Y.; Chen, X.-L.; Liu, W.-J.; Li, W.; Tang, Z.-Q. CN 110265654-A. 2019.
[28]
Du, J.-M.; Wang, W.-Y.; Wan, M.-T.; Wang, X.-C.; Li, G.-C.; Tan, Y.-C.; Li, C.-H.; Tu, S.-B.; Sun, Y.-M. Adv. Energy Mater. 2021, 11, 2102259.
[29]
Wu, W.-Y.; Duan, J.; Wen, J.-Y.; Chen, Y.-W.; Liu, X.-Y.; Huang, L.-Q.; Wang, Z.-F.; Deng, S.-Y.; Huang, Y.-H.; Luo, W. Science China Chem. 2020, 63, 1483.
[30]
Xing, J.-X.; Chen, T.; Yi, L.-Y.; Wang, Z.-H.; Song, Z.-C.; Chen, X.-X.; Wei, C.-H.; Zhou, A.-J.; Li, H.; Li, J.-Z. Energy Storage Mater. 2023, 63, 103067.
[31]
Lin, Q.-J.; Zhang, F.-Z.; Zhao, L.-B. Science and Technology Foresight 2024, 3, 7 (in Chinese).
[31]
(林启敬, 张福政, 赵立波, 前瞻科技, 2024, 3, 7.)
[32]
Qin, Y. Proceedings of the Institution of Mechanical Engineers, Part N: Journal of Nanomate, Nanoeng and Nanosystems. 2018, 232, 5.
[33]
Cao, Y.; Meng, X.; Li, A. Energy Storage Mater. 2021, 4, 363.
[34]
Zhou, S.; Usman, I.; Wang, Y.-J.; Pan, A.-Q. Energy Storage Mater. 2021, 38, 141.
[35]
Kumar, A. Rapid Prototyping J. 2019, 25, 1328.
[36]
Pei, M.; Shi, H.-T.; Yao, F.-T.; Liang, S.-T.; Xu, Z.-W.; Pei, X.-Y.; Wang, S.; Hu, Y.-L. J. Mater. Chem. A 2021, 9, 25237.
[37]
Zhang, Y.; Wang, C.-W.; Pastel, G.; Kuang, Y.-D.; Xie, H.; Li, Y.-J.; Liu, B.-Y.; Luo, W.; Chen, C.-J.; Hu, L.-B. Adv. Energy Mater. 2018, 8, 1800635.
[38]
Chen, Y.-M.; Ke, X.; Cheng, Y.-F.; Fan, M.-P.; Wu, W.-L.; Huang, X.-Y.; Liang, Y.-H.; Zhong, Y.-C.; Ao, Z.-M.; Lai, Y.-Q.; Wang, G.-X.; Shi, Z.-C. Energy Storage Mater. 2020, 26, 56.
[39]
Hong, B.; Fan, H.-L.; Cheng, X.-B.; Yan, X.-L.; Hong, S.; Dong, Q.-Y.; Gao, C.-H.; Zhang, Z.-I.; Lai, Y.-Q.; Zhang, Q. Energy Storage Mater. 2019, 16, 259.
[40]
Cao, D.-X.; Xing, Y.-J.; Tantratian, K.; Wang, X.; Ma, Y.; Mukhopadhyay, A.; Cheng, Z.; Zhang, Q.; Jiao, Y.-C.; Chen, L.; Zhu, H.-L. Adv. Mater. 2019, 31, 1807313.
[41]
Shen, K.; Li, B.; Yang, S.-B. Energy Storage Mater. 2020, 24, 670.
[42]
Otto, S.-K.; Fuchs, T.; Moryson, Y.; Lerch, C.; Mogwitz, B.; Sann, J.; Janek, J.; Henss, A. ACS Appl. Energy Mater. 2021, 4, 12798.
[43]
Ren, X.-D.; Chen, S.-R.; Lee, H.-K.; Mei, D.-H.; Engelhard, M.-H.; Burton, S.-D.; Zhao, W.-G.; Zheng, J.-M.; Li, Q.-Y.; Ding, M.-S.; Schroeder, M.; Alvarado, J.; Xu, K.; Meng, Y.-S.; Liu, J.; Zhang, J.-G.; Xu, W. Chem 2018, 4, 1877.
[44]
Tu, Z.-Y.; Choudhury, S.; Zachman, M.-J.; Wei, S.-Y.; Zhang, K.-H.; Kourkoutis, L.-F.; Archer, L.-A. Nat. Energy 2018, 3, 310.
[45]
Seo, J.-Y.; Jeong, W.-Y.; Lim, M.-H.; Choi, B.-K.; Park, S.-H.; Jo, Y.-S.; Lee, J.-W.; Lee, H.-K. Energy Storage Mater. 2023, 60, 102827.
[46]
Zhang, L.; Zhu, X.-L.; Wang, G.-Y.; Xu, G.; Wu, M.-H.; Liu, H.-K.; Dou, S.-X.; Wu, C. Small 2021, 17, 2007578.
[47]
Varzi, A.; Thanner, K.; Scipioni, R.; Di Lecce, D.; Hassoun, J.; D?rfler, S.; Altheus, H.; Kaskel, S.; Prehal, C.; Freunberger, S.-A. J. Power Sources 2020, 480, 228803.
[48]
Hu, M.-T.; Tong, Z.-M.; Cui, C.; Zhai, T.-Y.; Li, H.-Q. Nano Lett. 2022, 22, 3047.
[49]
Chen, K.-H.; Sanchez, A.-J.; Kazyak, E.; Davis, A.-L.; Dasgupta, N.-P. Adv. Energy Mater. 2019, 9, 1802534.
[50]
Liu, Y.-Y.; Xiong, S.-Z.; Wang, J.-L.; Jiao, X.-X.; Li, S.; Zhang, C.-F.; Song, Z.-X. Energy Storage Mater. 2019, 19, 24.
[51]
Acebedo, B.; Cid, R.; de Lasen-Tejada, M.; Morant-Mi?ana, M.-C.; Fallarino, L.; Goikolea, E.; Rikarte, J.; Gonzalo, E.; Ruiz de Larramendi, I. J. Power Sources 2024, 618, 235218.
[52]
Matsuda, Y.; Kuwata, N.; Kawamura, J. Solid State Ionics 2018, 320, 38.
[53]
Zhao, Y.-N.; Li, S.-P.; Huang, X.-W.; Chen, W.-Y.; Wang, C.-H.; Tang, X.-W.; Dou, H.; Zhang, X.-G. Small 2024, 2312129.
[54]
Liu, S.-S.; Ma, Y.-L.; Zhou, Z.-X.; Lou, S.-F.; Huo, H.; Zuo, P.-J.; Wang, J.-J.; Du, C.-Y.; Yin, G.-P.; Gao, Y.-Z. Energy Storage Mater. 2020, 33, 423.
[55]
Mochalov, S.-E.; Nurgaliev, A.-R.; Kuzmina, E.-V.; Ivanov, A.-L.; Kolosnitsyn, V.-S. Vacuum 2019, 168, 108816.
[56]
Wasa, K.; Kanno, I.; Kotera, H. Nano-mater and MEMS William Andrew. 2012, 1, 26.
[57]
Wu, F.; Tan, G.-Q.; Lu, J.; Chen, R.-J.; Li, L.; Amine, K. Nano Lett. 2014, 14, 1281.
[58]
Sun, J.-R.; Zhang, S.; Li, J.-D.; Xie, B.; Ma, J.; Dong, S.-M.; Cui, G.-L. Adv. Mater. 2023, 35, 2209404.
[59]
Peng, K.; Wang, B.; Li, Y.-M.; Ji, C.-C. RSC Adv. 2015, 5, 81468.
[60]
Fang, Z.-L; Li, R.; Liu, K.-Y.; Yang, Y. Journal of the Chinese Ceramic Soc. 2023, 51, 248 (in Chinese).
[60]
(方自力, 李蓉, 刘志宽, 阳叶, 中国陶瓷学会会刊, 2023, 51, 248.)
[61]
Yang, C.; He, L.-H.; Liu, Y.-Z.; Chen, P. Mining and Metallur. Eng. 2022, 42, 164 (in Chinese).
[61]
(杨彩, 何鲁华, 刘依卓子, 陈鹏, 矿冶工程 , 42, 164.)
[62]
Li, S.-H.; Wang, C.; Lu, Z.-D. Chem. J. Chinese Univ. 2021, 42, 1530 (in Chinese).
[62]
(李世恒, 王超, 鲁振达, 高等学校化学学报, 2021, 42, 1530.)
[63]
Bai, S.; Bao, W.; Qian, K.; Han, B.; Li, W.-K.; Sayahpour, B.; Sreenarayanan, B.; Tan, D.-H.; Ham, S.-Y.; Meng, Y.-S. Adv. Energy Mater. 2023, 13, 2301041.
[64]
Yang, C.; Ma, H.-C.; Yuan, R.-C.; Wang, K.-Y.; Liu, K.; Long, Y.-Z.; Xu, F.; Li, L.; Zhang, H.-T.; Zhang, Y.-C.; Li, X.-Y.; Wu, H. Nat. Energy 2023, 8, 703.
[65]
Yang, Y.-F.; Wang, J.-Y.; Kim, S.-C.; Zhang, W.-B.; Peng, Y.-C.; Zhang, P.; Vilá, R.-A.; Ma, Y.-X.; Jeong, Y.-K.; Cui, Y. Nano Lett. 2023, 23, 5042.
[66]
Yang, X.-Y.; Liang, D.; Zhang, T.; Li, M.; Zhao, C.-C. Chinese Journal of Power Sources 2024, 48, 1232 (in Chinese).
[66]
(杨幸遇, 梁栋, 张涛, 李蒙, 赵冲冲, 电源技术, 2024, 48, 1232.)
[67]
Min, X.-Q.; Xu, G.-J.; Xie, B.; Guan, P.; Sun, M.-L.; Cui, G.-L. Energy Storage Mater. 2022, 47, 297.
[68]
Wang, C.; Yang, F.-Z.; Wan, W.; Wang, S.-H.; Zhang, Y.-Y.; Huang, Y.-H.; Li, J. Energy Environ. Sci. 2023, 16, 4660.
[69]
Cao, Z.-Y.; Xu, P.-Y.; Zhai, H.-W.; Du, S.; Mandal, J.; Dontigny, M.; Zaghib, K.; Yang, Y. Nano Lett. 2016, 16, 7235.
[70]
Yue, X.-Y.; Yao, Y.-X.; Zhang, J.; Yang, S.-Y.; Hao, W.; Li, Z.-H.; Tang, C.; Chen, Y.-M.; Yan, C.; Zhang, Q. Angew. Chem. Int. Ed. 2022, 61, e202205697.
[71]
Chen, X.-L.; Yang, F.-Z.; Zhang, C.; Wan, W.; Liu, G.-X.; Qu, G.; Wang, Z.-H.; Li, S.; Huang, Y.-H.; Wang, C. Adv. Energy Mater. 2024, 14, 2304097.
[72]
Zhang, H.-Q.; Cheng, J.; Liu, H.-B.; Li, D.-P.; Zeng, Z.; Li, Y.-Y.; Ji, F.-J.; Guo, Y.-X.; Wei, Y.; Zhang, S.; Bai, T.-S.; Xu, X.; Peng, R.-Q.; Lu, J.-Y.; Ci, L.-J. Adv. Energy Mater. 2023, 13, 2300466.
[73]
Yue, X.-Y.; Yao, Y.-X.; Zhang, J.; Yang, S.-Y.; Li, Z.-H.; Yan, C.-; Zhang, Q. Adv. Mater. 2022, 34, 2110337.
[74]
Adhitama, E.; Brandao, F.-D.; Dienwiebel, I.; Bela, M. M.; Javed, A.; Haneke, L.; Stan, M.-C.; Winter, M.; Gomez-Martin, A.; Placke, T. Adv. Funct. Mater. 2022, 32, 2201455.
[75]
Adhitama, E.; Bela, M.-M.; Demelash, F.; Stan, M.-C.; Winter, M.; Gomez-Martin, A.; Placke, T. Adv. Energy Mater. 2023, 13, 2203256.
[76]
Chen, L.; Chi, S.-S.; Dong, Y.; Li, D.; Zhang, B.-C.; Fan, L.-Z. Journal of the Chinese Ceramic Society 2018, 46, 21 (in Chinese).
[76]
(陈龙, 池上森, 董源, 李丹, 张博晨, 范丽珍, 硅酸盐学报, 2018, 46, 21.)
[77]
Zhou, H.-L.; Ma, X.-Y.; Wang, Y.-F.; Guan, X.; Wang, B. Acta Chim. Sinica 2012, 70, 783 (in Chinese).
[77]
(周华龙, 马晓燕, 王毅霏, 管兴, 王波, 化学学报, 2012, 70, 783.)
[78]
Mao, E.-Y.; Wang, L.; Sun, Y.-M. Chemical Journal of Chinese Universities 2021, 45, 1552 (in Chinese).
[78]
(毛尔洋, 王莉, 孙永明, 高等学校化学学报, 2021, 45, 1552.)
[79]
Tian, S.-W.; Zhou, L.-X.; Zhang, B.-Q.; Zhang, J.-J.; Du, X.-F.; Zhang, H.; Hu, S.-J.; Yuan, Z.-X.; Han, P.-X.; Li, S.-L.; Zhao, W.; Zhou, X.-H.; Cui, G.-L. Acta Chim. Sinica 2022, 80, 1410 (in Chinese).
[79]
(田宋炜, 周丽雪, 张秉乾, 张建军, 杜晓璠, 张浩, 胡思伽, 苑志祥, 韩鹏献, 李素丽, 赵伟, 周新红, 崔光磊, 化学学报 , 80, 1410.)
[80]
Xiao, L.-J.; Zhang, Y.-P.; Hong, M. Chin. J. Org. Chem. 2023, 43, 949 (in Chinese).
[80]
(肖丽娟, 张艳平, 洪缪, 有机化学, 2023, 43, 949.)
[81]
Liu, J.; Yang, Z.; Liu, W.; Yang, Z.; Chen, S.; Li, R.; Huang, T.; Liu, H. Sci. Sin. Chim. 2023, 53, 1277 (in Chinese).
[81]
(刘嘉星, 杨智昊, 刘维捷, 阳征斐, 陈苏越, 李若兰, 黄铁骑, 刘洪涛, 中国科学: 化学, 2023, 53, 1277.)
文章导航

/