基于非基因工程的细胞膜受体蛋白可视化成像
收稿日期: 2024-12-03
网络出版日期: 2025-01-24
基金资助
国家自然科学基金(82373630); 国家自然科学基金(82073606); 河南省本科高校青年骨干教师项目(2023GGJS009)
Visualization Imaging of Cell Membrane Receptor Proteins Based on Non-genetic Engineering Approaches
Received date: 2024-12-03
Online published: 2025-01-24
Supported by
National Natural Science Foundations of China(82373630); National Natural Science Foundations of China(82073606); training grant of Henan Province for Young Backbone Teachers(2023GGJS009)
细胞膜受体蛋白是介导细胞与外界环境交流的重要媒介, 其表达量或行为的改变预示机体某些生理或病理过程的启动. 传统的基因工程蛋白成像策略涉及基因操纵, 其基因修饰会干扰细胞内的其它生物学过程, 且存在不可预测等局限性. 然而, 非基因工程蛋白成像策略往往具有简便、可程序化设计、易于调控等优势, 已被广泛用于细胞膜受体蛋白的成像研究. 本文首先综述了非基因工程蛋白成像用于细胞类型的辨别, 其识别策略包括逻辑门探针、荧光共振能量转移(FRET)探针、结构约束杂交探针和信号标签; 其次, 总结了该蛋白成像模式在细胞膜受体蛋白相互作用及空间分布分析成像的应用; 最后对该领域面临的挑战及未来的发展方向进行了展望.
周淼淼 , 曹浩文 , 杨心怡 , 任心怡 , 姚峰 , 何磊良 . 基于非基因工程的细胞膜受体蛋白可视化成像[J]. 化学学报, 2025 , 83(3) : 299 -308 . DOI: 10.6023/A24120363
Cell membrane receptor proteins are important mediators for communication between cells and the external environment. Changes in their expression levels or behavior may indicate the initiation of certain physiological or pathological processes in the body, and many cell membrane receptor proteins have been used as a basis for identifying different cell populations or subtypes and as targets for targeted therapy. Traditional genetic engineering protein imaging strategies involve genetic manipulation, which may interfere with other biological processes within the cell and have unpredictable limitations. Therefore, non-genetic engineering protein imaging strategies have gained significant attention in tumor visualization imaging research, mainly due to their notable characteristics, including simplicity, programmable design, and ease of regulation, and have been widely used in the imaging studies of cell membrane receptor proteins. This review comprehensively summarizes the use of non-genetic engineering strategies for cell membrane receptor protein imaging. It includes the design of logical gate probes, fluorescence resonance energy transfer (FRET) probes, structurally constrained hybridization probes, and signal tags for cell type identification; secondly, it summarizes the application of this protein imaging mode in the interaction of cell membrane receptor proteins, where receptor dimerization in the interaction of membrane receptor proteins is the first step in receptor activation and cell communication, and the visualization of membrane receptor dimerization is achieved by designing DNA probe systems and fluorescent sensors. Additionally, this review covers the application of spatial distribution analysis imaging of cell membrane receptor proteins, achieving nanometer-level spatial distribution imaging of membrane receptors through single-molecule localization microscopy (SMLM) and point accumulation for imaging in nanoscale topography (PAINT); finally, it looks forward to the challenges faced in this field and future development directions. With advancements in DNA nanotechnology, imaging technology, and bioinformatics, future research on non-genetic engineering strategies could provide higher resolution and more in-depth imaging of cell membrane receptor proteins, thereby offering more innovative pathways for in-depth study of intercellular communication mechanisms.
[1] | Chen, J.-B.; Chou, F.-J.; Yeh, S.-Y.; Ou, Z.-Y.; Shyr, C.; Huang, C.-P.; Xiang, Z.-D.; Sun, Y.; Messing, E.; Zu, X.-B.; Chang, C. Oncogene 2020, 39, 574. |
[2] | Pedram, A.; Razandi, M.; Lewis, M.; Hammes, S.; Levin, E. R. Dev. Cell 2014, 29, 482. |
[3] | Dong, M.-D.; Zhang, H.; Mo, C.-Y.; Li, W.-J.; Zhang, W.-W.; Jia, K.-T.; Liu, W.; Yi, M.-S. Int. J. Mol. Sci. 2021, 22, 10022. |
[4] | Sanganna-Gari, R. R.; Montalvo-Acosta, J. J.; Heath, G. R.; Jiang, Y. N.; Gao, X. L.; Nimigean, C. M.; Chipot, C.; Scheuring, S. Nat. Commun. 2021, 12, 4363. |
[5] | Itakura, M.; Yamaguchi, K.; Kitazawa, R.; Lim, S. Y.; Anan, Y.; Yoshitake, J.; Shibata, T.; Negishi, L.; Sugawa, H.; Nagai, R.; Uchida, K. Nat. Commun. 2022, 13, 2974. |
[6] | Yu, L.-M.; Di, W.-C.; Dong, X.; Li, Z.; Zhang, Y.; Xue, X.-D.; Xu, Y.-L.; Zhang, J.; Xiao, X.; Han, J.-S.; Liu, Y.; Yang, Y.; Wang, H.-S. Biochim. Biophys. Acta Mol. Basis Dis. 2018, 1864, 563. |
[7] | Brown, D. M.; Ruoslahti, E. Cancer Cell 2004, 5, 365. |
[8] | Liu, Y.; Wang, W.-L.; Zhao, Q.; Yuan, P.; Li, J.-X.; Song, X.-R.; Liu, Z.-Q.; Ding, D.-W.; Wang, L.-L.; Song, L.-S. Dev. Comp. Immunol. 2021, 116, 103937. |
[9] | Rowland, R.; Brandariz-Nu?ez, A. Microbiol. Spectr. 2021, 9, e0119921. |
[10] | Kuhlmann, L.; Govindarajan, M.; Mejia-Guerrero, S.; Ignatchenko, V.; Liu, L.-Y.; Grünwald, B. T.; Cruickshank, J.; Berman, H.; Khokha, R.; Kislinger, T. J. Proteome Res. 2022, 21, 2224. |
[11] | Kim, K. M.; Noh, J. H.; Bodogai, M.; Martindale, J. L.; Yang, X.; Indig, F. E.; Basu, S. K.; Ohnuma, K.; Morimoto, C.; Johnson, P. F.; Biragyn, A.; Abdelmohsen, K.; Gorospe, M. Genes Dev. 2017, 31, 1529. |
[12] | Wang, B.; Cai, X.-D.; Xiao, J.-X. Acta Chim. Sinica 2024, 82, 367 (in Chinese). |
[12] | (王博, 蔡向东, 肖建喜, 化学学报, 2024, 82, 367.) |
[13] | Cai, Z.-M.; Xie, C.-H.; Qiao, W.; Fei, X.-B.; Guo, X.-X.; Liu, H.-C.; Li, X.-Y.; Fang, X.; Xu, G.-Q.; Dou, H.; Deng, G.-M. Front. Immunol. 2017, 8, 1723. |
[14] | Huisman, W.; Gille, I.; VanderMaarel, L. E.; Hageman, L.; Morton, L. T.; de Jong, R. C. M.; Heemskerk, M. H. M.; Amsen, D.; Falkenburg, J. H. F.; Jedema, I. J. Infect. Dis. 2022, 226, 833. |
[15] | Zhang, P.-S.; Jing, L.-H. Acta Chim. Sinica 2022, 80, 805 (in Chinese). |
[15] | (张沛森, 荆莉红, 化学学报, 2022, 80, 805.). |
[16] | Babelova, L.; Sohova, M. E.; Poturnayova, A.; Buríková, M.; Bizík, J.; Hianik, T. Electroanalysis 2018, 30, 1487. |
[17] | Huang, Y.-Q.; Luo, J.-W.; Li, J.-Q.; Zhang, R.; Liu, X.-F.; Fan, Q.-L.; Huang, W. Acta Chim. Sinica 2024, 82, 903 (in Chinese). |
[17] | (黄艳琴, 罗集文, 李佳启, 张瑞, 刘兴奋, 范曲立, 黄维, 化学学报, 2024, 82, 903.) |
[18] | Kanayasu-Toyoda, T.; Tanaka, T.; Kikuchi, Y.; Uchida, E.; Matsuyama, A.; Yamaguchi, T. J. Stem Cells 2016, 34, 1251. |
[19] | Tran, H. T. T.; Gigl, M.; Le, N. P. K.; Dawid, C.; Lamy, E. J. Pharmaceuticals (Basel) 2021, 14, 1055. |
[20] | Tilli, T. M. J. Pers. Med. 2021, 11, 1348. |
[21] | Rusinova, R.; He, C.; Andersen, O. S. Proc. Natl. Acad. Sci. U. S. A. 2021, 118, e2113229118. |
[22] | Remington, S. Protein Sci. 2011, 20, 1509. |
[23] | Kong, J.; Wang, Y.-F.; Qi, W.; Huang, M.-M.; Su, R.-X.; He, Z. M. Adv. Colloid Interface Sci. 2020, 285, 102286. |
[24] | VanThor, J. J.; Champion, P. M. Annu. Rev. Phys. Chem. 2023, 74, 123. |
[25] | Liang, G.-T.; Lai, C.-X.; Yue, Z.-J.; Zhang, H.-B.; Li, D.-Y.; Chen, Z.; Lu, X.-Y.; Tao, L.; Subach, F. V.; Piatkevich, K. D. Front. Bioeng. Biotechnol. 2022, 10, 1039317. |
[26] | Zhang, S.; Ai, H.-W. Nat. Chem. Biol. 2020, 16, 1434. |
[27] | Hirano, M.; Ando, R.; Shimozono, S.; Sugiyama, M.; Takeda, N.; Kurokawa, H.; Deguchi, R.; Endo, K.; Haga, K.; Takai-Todaka, R.; Inaura, S.; Matsumura, Y.; Hama, H.; Okada, Y.; Fujiwara, T.; Morimoto, T.; Katayama, K.; Miyawaki, A. Nat. Biotechnol. 2022, 40, 1132. |
[28] | Qu, Z.; Fang, J.; Wang, Y.-X.; Sun, Y.; Liu, Y.; Wu, W.-H.; Zhang, W.-B. Nat. Commun. 2023, 14, 3480. |
[29] | Pedelacq, J. D.; Cabantous, S. Int. J. Mol. Sci. 2019, 20, 3479. |
[30] | You, M.; Peng, L.; Shao, N.; Zhang, L.; Qiu, L.; Cui, C.; Tan, W. J. Am. Chem. Soc. 2014, 136, 1256. |
[31] | Douglas, S. M.; Bachelet, I.; Church, G. M. Science 2012, 335, 831. |
[32] | Chang, X.; Zhang, C.; Lv, C.; Sun, Y.; Zhang, M.; Zhao, Y.; Yang, L.; Han, D.; Tan, W. J. Am. Chem. Soc. 2019, 141, 12738. |
[33] | Peng, R.; Zheng, X.; Lyu, Y.; Xu, L.; Zhang, X.; Ke, G.; Liu, Q.; You, C.; Huan, S.; Tan, W. J. Am. Chem. Soc. 2018, 140, 9793. |
[34] | Feng, C.; Chen, T.; Mao, D.; Zhang, F.; Tian, B.; Zhu, X. ACS Sens. 2020, 5, 3116. |
[35] | Yuan, K.; Meng, H.-M.; Wu, Y.-A. CCS Chem. 2022, 4, 1597. |
[36] | Chen, B.; Ma, W.; Long, X.; Cheng, H.; Sun, H.; Huang, J.; Jia, R. He, X.; Wang, K. Anal. Chem. 2022, 94, 2502. |
[37] | Li, Y.; Zhang, X.; Pan, W.; Li, N.; Tang, B. Anal. Chem. 2020, 92, 11921. |
[38] | Ang, Y. S.; Li, J. J.; Chua, P. J.; Ng, C. T.; Bay, B. H.; Yung, L. L. Anal. Chem. 2018, 90, 6193. |
[39] | Wu, N.; Bao, L.; Ding, L.; Ju, H. Angew. Chem. Int. Ed. 2016, 55, 5220. |
[40] | Yuan, B.; Chen, Y.; Sun, Y.; Guo, Q; Huang, J.; Liu, J.; Meng, X.; Yang, X.; Wen, X.; Li, Z.; Li, L.; Wang, K. Anal. Chem. 2018, 90, 6131. |
[41] | Li, N.; Zhang, W.; Lin, L.; Shah, S. N. A.; Li, Y.; Lin, J.-M. Anal. Chem. 2019, 91, 2600. |
[42] | Zhu, L.; Xu, Y.; Wei, X.; Lin, H.; Huang, M.; Lin, B.; Song, Y.; Yang, C. Angew. Chem. Int. Ed. 2021, 60, 18111. |
[43] | Huang, M.; Zhu, L.; Kang, S.; Chen, F.; Wei, X.; Lin, L.; Chen, X.; Wang, W.; Zhu, Z.; Yang, C.; Song, Y. Anal. Chem. 2021, 93, 15958. |
[44] | Ang, Y. S.; Yung, L. L. Nucleic Acids Res. 2021, 49, 4258. |
[45] | Huang, F.; You, M.; Han, D.; Xiong, X.; Liang, H.; Tan, W. J. Am. Chem. Soc. 2013, 135, 7967. |
[46] | Idili, A.; Porchetta, A.; Amodio, A.; Vallée-Bélisle, A.; Ricci, F. Nano Lett. 2015, 15, 5539. |
[47] | Shi, H.; Lei, Y.; Ge, J.; He, X.; Cui, W.; Ye, X.; Liu, J.; Wang, K. Anal. Chem. 2019, 91, 9154. |
[48] | Yang, T.; Xu, L.; Liu, S.; Shen, Y.; Huang, L.; Zhang, L.; Ding, S.; Cheng, W. Mikrochim. Acta 2019, 186, 439. |
[49] | Liu, L.; Li, S.; Mao, A.; Wang, G.; Liu, Y.; Ju, H.; Ding, L. Chem. Sci. 2020, 11, 1665. |
[50] | Liu, Z.; Liang, Y.; Cao, W.; Gao, W.; Tang, B. Anal. Chem. 2021, 93, 8915. |
[51] | Lei, Y.; Tang, J.; Shi, H.; Ye, X.; He, X.; Xu, F.; Yan, L.; Qiao, Z.; Wang, K. Anal. Chem. 2016, 88, 11699. |
[52] | G?tzke, H.; Kilisch, M.; Martínez-Carranza, M.; Sograte-Idrissi, S.; Rajavel, A.; Schlichthaerle, T.; Engels, N.; Jungmann, R.; Stenmark, P.; Opazo, F.; Frey, S. Nat. Commun. 2019, 10, 4403. |
[53] | Sato, R.; Kozuka, J.; Ueda, M.; Mishima, R.; Kumagai, Y.; Yoshimura, A.; Minoshima, M.; Mizukami, S.; Kikuchi, K. J. Am. Chem. Soc. 2017, 139, 17397. |
[54] | Hayashi, T.; Hamachi, I. Acc. Chem. Res. 2012, 45, 1460. |
[55] | Karch, S.; Broichhagen, J.; Schneider, J.; B?ning, D.; Hartmann, S.; Schmid, B.; Tripal, P.; Palmisano, R.; Alzheimer, C.; Johnsson, K.; Huth, T. J. Med. Chem. 2018, 61, 6121. |
[56] | Zhuang, H.; Matsunami, H. Nat. Protoc. 2008, 3, 1402. |
[57] | Jensen, E. C. Anat. Rec. (Hoboken) 2012, 295, 2031. |
[58] | Lang, K.; Chin, J.-W. Chem. Rev. 2014, 114, 4764. |
[59] | George, N.; Pick, H.; Vogel, H.; Johnsson, N.; Johnsson, K. J. Am. Chem. Soc. 2004, 126, 8896. |
[60] | Miller, L. W.; Cai, Y.; Sheetz, M. P.; Cornish, V. W. Nat. Methods 2005, 2, 255. |
[61] | Popp, M. W.; Antos, J. M.; Grotenbreg, G. M.; Spooner, E.; Ploegh, H. L. Nat. Chem. Biol. 2007, 3, 707. |
[62] | Poc, P.; Gutzeit, V. A.; Ast, J.; Lee, J.; Jones, B. J.; D'Este, E.; Mathes, B.; Lehmann, M.; Hodson, D. J.; Levitz, J.; Broichhagen, J. Chem. Sci. 2020, 11, 7871. |
[63] | Birke, R.; Ast, J.; Roosen, D. A.; Lee, J.; Ro?mann, K.; Huhn, C.; Mathes, B.; Lisurek, M.; Bushiri, D.; Sun, H.; Jones, B.; Lehmann, M.; Levitz, J.; Haucke, V.; Hodson, D. J.; Broichhagen, J. Org. Biomol. Chem. 2022, 20, 5967. |
[64] | Liu, Q.; Zheng, J.; Sun, W.; Huo, Y.; Zhang, L.; Hao, P.; Wang, H.; Zhuang, M. Nat. Methods 2018, 15, 715. |
[65] | Wang, Y.; Zhang, N.; Lu, S.; Wang, J.; Bing, T.; Liu, X.; Chen, C.; Shang, G.-D. Anal. Chem. 2019, 91, 13720. |
[66] | Liu, L.; Kuang, Y.; Wang, Z.; Chen, Y. Chem. Sci. 2020, 11, 11298. |
[67] | Zhang, X.; Yin, J.; Pan, W.; Li, Y.; Li, N.; Tang, B. Anal. Bioanal. Chem. 2022, 67, 82. |
[68] | Lemmon, M. A.; Schlessinger, J. Cell 2010, 141, 1117. |
[69] | Pellat, A.; Vaquero, J.; Fouassier, L. J. Hepatology 2018, 67, 762. |
[70] | Leippe, P.; Broichhagen, J.; Cailliau, K.; Mougel, A.; Morel, M.; Dissous, C.; Trauner, D.; Vicogne, J. Angew. Chem. Int. Ed. 2020, 59, 6720. |
[71] | Trenker, R.; Jura, N. Curr. Opin. Cell Biol. 2020, 63, 174. |
[72] | Brizzolara, A.; Benelli, R.; Venè, R.; Barboro, P.; Poggi, A.; Tosetti, F.; Ferrari, N. Cancer Lett. 2017, 400, 9. |
[73] | Song, D.; Jung, Y. Angew. Chem. Int. Ed. 2019, 58, 2045. |
[74] | Coban, O.; Zanetti-Dominguez, L. C.; Matthews, D. R.; Rolfe, D. J.; Weitsman, G.; Barber, P. R.; Barbeau, J.; Devauges, V.; Kampmeier, F.; Winn, M.; Vojnovic, B.; Parker, P. J.; Lidke, K. A.; Lidke, D. S.; Ameer-Beg, S. M.; Martin-Fernandez, M. L.; Ng, T. Biophys. J. 2015, 108, 1013. |
[75] | Liang, H.; Chen, S.; Li, P.; Wang, L.; Li, J.; Li, J.; Yang, H. H.; Tan, W. J. Am. Chem. Soc. 2018, 140, 4186. |
[76] | Wang, L.; Li, W.; Sun, J.; Zhang, S. Y.; Yang, S.; Li, J.; Li, J.; Yang, H. H. Anal. Chem. 2018, 90, 14433. |
[77] | Kan, A.-L.; Ding, S.-Y.; Zhang, N.; Jiang, W. Sensors and Actuators B-Chemical 2022, 350, 0925. |
[78] | Yin, J.; Jiao, Y.; Peng, X.; He, H.; Duan, C. Biosens. Bioelectron. 2020, 153, 112026. |
[79] | Jiao, Y.; Yin, J.; He, H.; Peng, X.; Gao, Q.; Duan, C. J. Am. Chem. Soc. 2018, 140, 5882. |
[80] | Torelli, M. D.; Rickard, A. G.; Backer, M. V.; Filonov, D. S.; Nunn, N. A.; Kinev, A. V.; Backer, J. M.; Palmer, G. M.; Shenderova, O. A. Bioconjug. Chem. 2019, 30, 604. |
[81] | Stone, M. B.; Shelby, S. A.; Veatch, S. L. Chem. Rev. 2017, 117, 7457. |
[82] | Sauer, M.; Heilemann, M. Chem. Rev. 2017, 117, 7478. |
[83] | Yang, W.; Nan, H.; Xu, Z.; Huang, Z.; Chen, S.; Li, J.; Li, J.; Yang, H. Anal. Chem. 2021, 93, 12265. |
[84] | Manzo, C.; Garcia-Parajo, M. F. Rep. Prog. Phys. 2015, 78, 124601. |
[85] | Marchetti, L.; Bonsignore, F.; Gobbo, F.; Amodeo, R.; Calvello, M.; Jacob, A.; Signore, G.; Schirripa Spagnolo, C.; Porciani, D.; Mainardi, M.; Beltram, F.; Luin, S.; Cattaneo, A. Proc. Natl. Acad. Sci. U. S. A. 2019, 116, 21563. |
[86] | Delcanale, P.; Porciani, D.; Pujals, S.; Jurkevich, A.; Chetrusca, A.; Tawiah, K. D.; Burke, D. H.; Albertazzi, L. Angew. Chem. Int. Ed. 2020, 59, 18546. |
[87] | Winckler, P.; Lartigue, L.; Giannone, G.; DeGiorgi, F.; Ichas, F.; Sibarita, J. B.; Lounis, B.; Cognet, L. Sci. Rep. 2013, 3, 2387. |
[88] | Clowsley, A. H.; Kaufhold, W. T.; Lutz, T.; Meletiou, A.; Di Michele, L.; Soeller, C. J. Am. Chem. Soc. 2020, 142, 12069. |
[89] | Chien, F. C.; Lin, C.-Y.; Abrigo, G. Anal. Chem. 2021, 93, 15401. |
/
〈 |
|
〉 |