基于大环主体分子的核酸探针设计策略及生物应用
收稿日期: 2024-11-26
网络出版日期: 2025-02-05
基金资助
国家自然科学基金(82373630); 国家自然科学基金(82073606)
Design and Biological Application of Macrocyclic Host Molecules-based Nucleic Acid Probes
Received date: 2024-11-26
Online published: 2025-02-05
Supported by
National Natural Science Foundations of China(82373630); National Natural Science Foundations of China(82073606)
大环主体分子由于其独特的空腔结构及可灵活设计的主客体作用而得到广泛应用, 然而大环主体分子本身缺少靶向性, 因此在复杂的生物环境中很难对靶标进行特异性检测. 联合核酸探针可特异性识别生物靶标的优势, 设计基于大环主体分子的新型核酸探针, 可显著提高探针灵敏度、特异性和抗复杂环境干扰等性能. 本文系统综述了基于大环主体分子的核酸探针设计及其在生物传感和生物成像中的应用, 最后对该领域面临的挑战及未来的发展方向进行了展望, 通过整合多个响应元件增加基于大环主体分子的核酸探针的智能性和逻辑性, 构建智能响应材料, 可使其更好地适应体内环境的复杂性.
郭煜静 , 张梦盼 , 巩子彤 , 赵云莉 , 石康琦 , 何磊良 . 基于大环主体分子的核酸探针设计策略及生物应用[J]. 化学学报, 2025 , 83(3) : 309 -318 . DOI: 10.6023/A24110357
The rapid development of macrocyclic host molecules, with their unique cavity structures of various sizes, allows them to serve as molecular recognition sites for recognition and functional regulation mediated by host-guest interactions. Additionally, macrocyclic host molecules possess characteristics such as fluorescence enhancement, high biocompatibility, and ease of derivatization, which have led to their widespread application across various fields. However, macrocyclic host molecules inherently lack targeting ability, making specific detection of targets in complex biological environments challenging. The derivatization of macrocyclic molecule compounds can be used to adjust their recognition, physical, and biological properties on one hand; on the other hand, they can form macrocyclic polymers through covalent linkages. Moreover, they can spontaneously form supramolecular self-assemblies through non-covalent interactions. Leveraging these characteristics of macrocyclic host compounds, and combining the advantages of nucleic acid probes that can specifically recognize biological targets, the design and preparation of new nucleic acid probes based on macrocyclic host molecules often exhibit superior performance in terms of high sensitivity, high specificity, and resistance to interference from complex environments. This article systematically reviews the design strategies of nucleic acid probes based on both monomeric and aggregated forms of macrocyclic host molecules, which can be applied to the detection of genes, other targets, as well as cellular and in vivo imaging. Especially, nucleic acid probes based on monomeric macrocyclic host molecules, such as molecular beacons, aptamer probes, and adjacent nucleic acid probes, can target different targets and show broad application potential. Finally, the article looks forward to the challenges and future development directions in this field, suggesting that by integrating multiple responsive elements, the intelligence and logic of nucleic acid probes based on macrocyclic host molecules can be enhanced, and the construction of smart responsive materials can better adapt to the complexity of the in vivo environment.
[1] | Amabilino, D. B.; Gale, P. A. Chem. Soc. Rev. 2017, 46, 2376. |
[2] | Liu, Z.-C.; Nalluri, S. K. M.; Stoddart, J. F. Chem. Soc. Rev. 2017, 46, 2459. |
[3] | You, L.; Zha, D.-J.; Anslyn, E. V. Chem. Rev. 2015, 115, 7840. |
[4] | Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659 (in Chinese). |
[4] | (焦阳, 张希, 化学学报, 2018, 76, 659.) |
[5] | Lou, X.-Y.; Song, N.; Yang, Y.-W. Molecules 2017, 22, 1640. |
[6] | Wang, N.-P.; Zhang, Q.-P.; Zhang, Y.-H.; Chen, H.-Y. Acta Chim. Sinica 2003, 61, 597 (in Chinese). |
[6] | (王南平, 张其平, 张跃华, 陈洪渊, 化学学报, 2003, 61, 597.) |
[7] | Li, Y.-X.; Liu, Y. Acta Chim. Sinica 2023, 81, 928 (in Chinese). |
[7] | (李永雪, 刘育, 化学学报, 2023, 81, 928.) |
[8] | Liu, J.; Lan, Y.; Yu, Z.-Y.; Tan, C. S.; Parker, R. M.; Abell, C. Scherman, O. A. Acc. Chem. Res. 2017, 50, 208. |
[9] | Pinalli, R.; Pedrini, A.; Dalcanale, E. Chem. Soc. Rev. 2018, 47, 7006. |
[10] | Jiang, C.-Y.; Song, Z.-R.; Yu, L.-L.; Ye, S.-J.; He, H. Trends Anal. Chem. 2020, 133, 116086. |
[11] | Wu, L.-L.; Wang, Y.-D.; Xu, X.; Liu, Y.-L.; Lin, B.-Q.; Zhang, M.-X.; Zhang, J.-L.; Wan, S.; Yang, C.-Y.; Tan, W.-H. Chem. Rev. 2021, 121, 12035. |
[12] | Micura, R.; H?bartner, C. Chem. Rev. 2020, 49, 7331. |
[13] | Liu, J.-W.; Cao, Z.-H.; Lu, Y. Chem. Rev. 2009, 109, 1948. |
[14] | Samanta, D.; Ebrahimi, S. B.; Mirkin, C. A. Adv. Mater. 2020, 32, e1901743. |
[15] | Li, L.; Xu, S.-J.; Yan, H.; Li, X.-W.; Yazd, H. S.; Li, X.; Huang, T.; Cui, C.; Jiang, J.-H.; Tan, W.-H. Angew. Chem. Int. Ed. 2021, 60, 2221. |
[16] | Tan, W.-F.; He, J.-Q.; Deng, J.-L.; Yang, X.-W.; Cui, L.-J.; Ran, R.-Z.; Du, G.-W.; Jiang, X.-Q. Sci. Rep. 2018, 8, 3309. |
[17] | Kim, K.; Lee, C. H.; Park, C. B. Chem. Soc. Rev. 2020, 49, 5446. |
[18] | Mandal, S.; Li, Z.; Chatterjee, T.; Khanna, K.; Montoya, K.; Dai, L.-H.; Petersen, C.; Li, L.-D.; Tewari, M.; Alexander, J. B.; Walter, N. G. Acc. Chem. Res. 2021, 54, 388. |
[19] | Launonen, I. M.; Lyytik?inen, N.; Casado, J.; Anttila, E. A.; Szabó, A.; Haltia, U. M.; Jacobson, C. A.; Lin, J. R.; Maliga, Z.; Howitt, B.; Strickland, K. C.; Santagata, S.; Elias, K.; D'Andrea, A. D.; Konstantinopoulos, P. A.; Sorger, P. K.; F?rkkil?, A. Nat. Commun. 2022, 13, 835. |
[20] | Chang, D.-R.; Zakaria, S.; Esmaeili, S. S.; Chang, Y.-Y.; Filipe, C. D. M.; Soleymani, L.; Brennan, J. D; Liu, M.; Li, Y.-F. Acc. Chem. Res. 2021, 54, 3540. |
[21] | Khoo, A.; Liu, L. Y.; Nyalwidhe, J. O.; Semmes, O. J.; Vesprini, D.; Downes, M. R.; Boutros, P. C.; Liu, S. K.; Kislinger, T. Nat. Rev. Urol. 2021, 18, 707. |
[22] | Li, M.; Yin, F.-F.; Song, L.; Mao, X.-H.; Li, F.; Fan, C.-H.; Zuo, X.-L.; Xia, Q. Chem. Rev. 2021, 121, 10469. |
[23] | Wei, X.-W.; Zhuang, L.-J.; Li, H.-B.; He, C.-J.; Wan, H.; Hu, N.; Wang, P. Small 2020, 16, e2005828. |
[24] | Das, J.; Kelley, S. O. Angew. Chem. Int. Ed. 2020, 59, 2554. |
[25] | Minopoli, A.; Della, V. B.; Lenyk, B.; Gentile, F.; Tanner, J. A.; Offenh?usser, A.; Mayer, D.; Velotta, R. Nat. Commun. 2020, 11, 6134. |
[26] | Tang, Y.; Gao, L.; Feng, W.; Guo, C.; Yang, Q.-F.; Li, F.; Le, X. C. Chem. Soc. Rev. 2021, 50, 11844. |
[27] | Madhurantakam, S.; Muthukumar, S.; Prasad, S. ACS Omega 2022, 7, 12467. |
[28] | Deng, C. L.; Murkli, S. L.; Isaacs, L. D. Chem. Soc. Rev. 2020, 49, 7516. |
[29] | Bidar, N.; Oroojalian, F.; Baradaran, B.; Eyvazi, S.; Amini, M.; Jebelli, A.; Samad, H. S.; Paria, P. P.; Mokhtarzadeh, A.; Guardia, M. L. Trac-trend. Anal. Chem. 2020, 131, 116021. |
[30] | Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Essays Biochem. 2016, 60, 1. |
[31] | Tan, W.-H.; Wang, K.-M.; Drake, T. J. Curr. Opin. Chem. Biol. 2004, 8, 547. |
[32] | Shi, H.; He, X.-X.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Guo, Q.-P.; Huo, X.-Q. Sci. China Chem. 2010, 53, 704. |
[33] | Caputo, T. M.; Battista, E.; Netti, P. A.; Causa, F. ACS Appl. Mater. Interfaces 2019, 11, 17147. |
[34] | Zhang, Z.; Xiang, X.; Huang, F.-H.; Zheng, M.-M., Xia, X.-Y.; Han, L. Sensor. Actuat. B-chem. 2018, 273, 159. |
[35] | Cui, L.; Ke, G.-L.; Lin, X.-Y.; Song, Y.-L.; Zhang, H.-M.; Guan, Z.-C.; Zhu, Z.; Yang, C. J. Methods 2013, 63, 202. |
[36] | Bidar, N.; Amini, M.; Oroojalian, F.; Behzad, B.; Samad, H. S.; Shahbazi, M. A.; Mahmoud, H.; Ahad, M.; Michael, R. H.; Miguel, G. Trac-trend. Anal. Chem. 2021, 134, 276. |
[37] | Zheng, J.; Li, J.-S.; Gao, X.-X.; Jin, J.-Y.; Wang, K.-M.; Tan, W.-H.; Yang, R.-H. Anal. Chem. 2010, 82, 3914. |
[38] | Zhang, Q.-E.; Deng, T.; Li, J.-S.; Xu, W.-J.; Shen, G.-L.; Yu, R.-Q. Biosens. Bioelectron. 2015, 68, 253. |
[39] | Harris, D. C.; Saks, B. R.; Jayawickramarajah, J. J. Am. Chem. Soc. 2011, 133, 7676. |
[40] | He, L.-L.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Zhao, F.; Huang, J.; Liu, J.-B. Chem. Commun. (Camb) 2014, 50, 7803. |
[41] | Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Biomol. Eng. 2007, 24, 381. |
[42] | Fang, X.-H.; Tan, W.-H. Acc. Chem. Res. 2010, 43, 48. |
[43] | Tuerk, C.; Gold, L. Science 1990, 249, 505. |
[44] | Keefe, A. D.; Pai, S.; Ellington, A. Nat. Rev. Drug Discov. 2010, 9, 537. |
[45] | Wang, R.-W.; Zhu, G.-Z.; Mei, L.; Xie, Y.; Ma, H.-B.; Ye, M.; Qing, F.-L.; Tan, W.-H. J. Am. Chem. Soc. 2014, 136, 2731. |
[46] | Hicke, B. J.; Stephens, A. W.; Gould, T.; Chang, Y. F.; Lynott, C. K.; Heil, J.; Borkowski, S.; Hilger, C. S.; Cook, G.; Warren, S.; Schmidt, P. G. J. Nucl. Med. 2006, 47, 668. |
[47] | Shangguan, D.-H.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838. |
[48] | Tan, W.-H.; Donovan, M. J.; Jiang, J.-H. Chem. Rev. 2013, 113, 2842. |
[49] | Kuai, H.; Zhao, Z.-L.; Mo, L.-T.; Liu, H.; Hu, X.-X.; Fu, T.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2017, 139, 9128. |
[50] | Jiang, Y.; Pan, X.-S.; Chang, J.; Niu, W.-J.; Hou, W.-J.; Kuai, H.; Zhao, Z.-L.; Liu, J.; Wang, M.; Tan, W.-H. J. J. Am. Chem. Soc. 2018, 140, 6780. |
[51] | Mao, Q.-X.; Wang, L.-C.; Xue, D.-D.; Lin, X.-X.; Sun, F.; Xu, P.-C.; Chen, J.-R.; Li, W.-Y.; Li, X.-C.; Yan, F.; Hu, C. Anal. Chem. 2024, 96, 2022. |
[52] | Shetty, D.; Khedkar, J. K.; Park, K. M.; Kim, K. Chem. Soc. Rev. 2015, 44, 8747. |
[53] | Tian, T.; Song, Y.-Y.; Wei, L.; Wang, J.-Q.; Fu, B.-S.; He, Z.-Y.; Yang, X. R.; Wu, F.; Xu, G.-H.; Liu, S. M.; Li, C.-G.; Wang, S.-R.; Zhou, X. Nucleic Acids Res. 2017, 45, 2283. |
[54] | Chen, Y.-Y.; Huang, Z.-H.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 22780. |
[55] | Chen, Y.-Y.; Huang, Z.-H.; Zhao, H.-Y.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2017, 9, 8602. |
[56] | Zhou, X.; Su, X.-Y.; Pathak, P.; Vik, R.; Vinciguerra, B.; Isaacs, L.; Jayawickramarajah, J. J. Am. Chem. Soc. 2017, 139, 13916. |
[57] | Ihara, T.; Uemura, A.; Futamura, A.; Shimizu, M.; Baba, N.; Nishizawa, S.; Teramae, N.; Jyo, A. J. Am. Chem. Soc. 2009, 131, 1386. |
[58] | Yang, C.; Spinelli, N.; Perrier, S.; Defrancq, E.; Peyrin, E. Anal. Chem. 2015, 87, 3139. |
[59] | Schmidt, B.; Barner, K. C. Angew. Chem. Int. Ed. 2017, 56, 8350. |
[60] | Liang, Y.; Li, E.; Wang, K.-Y.; Guan, Z.-J.; He, H.-H.; Zhang, L.-L.; Zhou, H.-C.; Huang, F.-H.; Fang, Y. Chem. Soc. Rev. 2022, 51, 8378. |
[61] | Albert, S. K.; Thelu, H. V. P.; Golla, M.; Krishnan, N.; Varghese, R. Nanoscale 2017, 9, 5425. |
[62] | Li, H.-Y.; Peng, E.-W.; Zhao, F.; Li, J.; Xue, J.-M. Pharmaceutics 2021, 13, 1884. |
[63] | Zhao, F.; Yin, H.; Zhang, Z.-X.; Li, J. Biomacromolecules 2013, 14, 476. |
[64] | He, L.-L.; Shi, K.-Q.; Liu, X.-L.; Wang, Y.; Song, L.-L.; Wu, D.; Wu, Y.-J.; Xiong, Y.-M.; Huang, P.-L. Sensor. Actuat. B-chem. 2023, 393, 134126. |
[65] | Liu, P.; Sun, S.; Guo, X.-C.; Yang, X.-H.; Huang, J.; Wang, K.-M.; Wang, Q.; Liu, J.-B.; He, L.-L. Anal. Chem. 2015, 87, 2665. |
[66] | Wang, D. G.; Fan, J. B.; Siao, C. J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; Kruglyak, L.; Stein, L.; Hsie, L.; Topaloglou, T.; Hubbell, E.; Robinson, E.; Mittmann, M.; Morris, M. S.; Shen, N.; Kilburn, D.; Rioux, J.; Nusbaum, C.; Rozen, S.; Hudson, T. J.; Lipshutz, R.; Chee, M.; Lander, E. S. Science 1998, 280, 1077. |
[67] | Yeh, H. C.; Sharma, J.; Shih, IeM.; Vu, D. M.; Martinez, J. S.; Werner, J. H. A. J. Am. Chem. Soc. 2012, 134, 11550. |
[68] | Irizarry, K.; Kustanovich, V.; Li, C.; Brown, N.; Nelson, S.; Wong, W.; Lee, C. J. Nat. Genet. 2000, 26, 233. |
[69] | Guo, Y.-H.; Xu, P.; Hu, H.; Zhou, X.-D.; Hu, J.-M. Talanta 2013, 114, 138. |
[70] | Liu, G.; Lao, R.-J.; Xu, L.; Xu, Q.; Li, L.-Y.; Zhang, M.; Song, S.-P.; Fan, C.-H. Biosens. Bioelectron. 2013, 42, 516. |
[71] | Ihara, T.; Wasano, T.; Nakatake, R.; Arslan, P.; Futamura, A.; Jyo, A. Chem. Commun. (Camb) 2011, 47, 12388. |
[72] | Zou, Z.; Qing, Z.-H.; He, X.-X.; Wang, K.-M.; He, D.-G.; Shi, H.; Yang, X.; Qing, T.-P.; Yang, X.-X. Talanta 2014, 125, 306. |
[73] | Guo, B.-Y.; Sheng, Y.-Y.; Zhou, K.; Liu, Q.-S.; Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 3602. |
[74] | Xu, J.; Gao, Y.-F.; Li, B.-X.; Jin, Y. Biosens. Bioelectron. 2016, 80, 91. |
[75] | Yang, H.; Duan, Z.-Z.; Liu, F.-B.; Zhao, Z.-Y.; Liu, S.-M. ACS Macro Lett. 2023, 12, 295. |
[76] | Yu, Z.-Z.; Wang, M.-M.; Pan, W.; Wang, H.-Y.; Li, N.; Tang, B. Chem. Sci. 2017, 8, 4896. |
[77] | Gu, P.-L.; Li, Y.; Li, L.-Y.; Deng, S.-Y.; Zhu, X.-K.; Song, Y.; Song, E.-Q.; Tan, W.-H. ACS Nano 2023, 17, 24384. |
[78] | Cui, R.; Wang, F.; Meng, X.-Y.; Zhou, R.-A.; Sun, Z.-G.; Cheng, Y.; Zhu, H.-Q.; Wang, Y. Adv. Healthc. Mater. 2024, 13, e2401885. |
/
〈 |
|
〉 |