综述

基于大环主体分子的核酸探针设计策略及生物应用

  • 郭煜静 ,
  • 张梦盼 ,
  • 巩子彤 ,
  • 赵云莉 ,
  • 石康琦 ,
  • 何磊良
展开
  • a 郑州大学 公共卫生学院 郑州 450001
    b 开封市疾病预防控制中心 开封 475000

郭煜静, 2000年8月出生, 河南焦作人, 自2022年9月起加入郑州大学公共卫生学院何磊良课题组从事硕士研究工作, 研究涉及主客体化学, 超分子自组装.

张梦盼, 2002年2月出生, 河北邢台人, 自2023年9月起加入郑州大学公共卫生学院何磊良课题组从事硕士研究工作, 研究涉及核酸纳米探针设计及生物传感.

巩子彤, 2001年10月出生, 山东济宁人, 自2023年9月起加入郑州大学公共卫生学院何磊良课题组从事硕士研究工作, 研究涉及超分子自组装探针用于膜受体成像.

赵云莉, 2001年1月出生, 安徽芜湖人, 自2023年9月起加入郑州大学公共卫生学院何磊良课题组从事硕士研究工作, 研究涉及荧光编码核酸纳米探针设计及多元成像.

石康琦, 1996年12月出生, 河南开封人, 自2021年9月起加入郑州大学公共卫生学院何磊良课题组从事硕士研究工作, 研究涉及主客体介导的超分子自组装探针设计及成像应用.

何磊良, 教授, 2015年于湖南大学获博士学位, 目前在郑州大学公共卫生学院进行研究工作, 主要研究兴趣包括肿瘤液体活检及单细胞分析与调控.

收稿日期: 2024-11-26

  网络出版日期: 2025-02-05

基金资助

国家自然科学基金(82373630); 国家自然科学基金(82073606)

Design and Biological Application of Macrocyclic Host Molecules-based Nucleic Acid Probes

  • Yujing Guo ,
  • Mengpan Zhang ,
  • Zitong Gong ,
  • Yunli Zhao ,
  • Kangqi Shi ,
  • Leiliang He
Expand
  • a College of Public Health, Zhengzhou University, Zhengzhou 450001, China
    b Kaifeng Center for Disease Control and Prevention, Kaifeng 475000, China

Received date: 2024-11-26

  Online published: 2025-02-05

Supported by

National Natural Science Foundations of China(82373630); National Natural Science Foundations of China(82073606)

摘要

大环主体分子由于其独特的空腔结构及可灵活设计的主客体作用而得到广泛应用, 然而大环主体分子本身缺少靶向性, 因此在复杂的生物环境中很难对靶标进行特异性检测. 联合核酸探针可特异性识别生物靶标的优势, 设计基于大环主体分子的新型核酸探针, 可显著提高探针灵敏度、特异性和抗复杂环境干扰等性能. 本文系统综述了基于大环主体分子的核酸探针设计及其在生物传感和生物成像中的应用, 最后对该领域面临的挑战及未来的发展方向进行了展望, 通过整合多个响应元件增加基于大环主体分子的核酸探针的智能性和逻辑性, 构建智能响应材料, 可使其更好地适应体内环境的复杂性.

本文引用格式

郭煜静 , 张梦盼 , 巩子彤 , 赵云莉 , 石康琦 , 何磊良 . 基于大环主体分子的核酸探针设计策略及生物应用[J]. 化学学报, 2025 , 83(3) : 309 -318 . DOI: 10.6023/A24110357

Abstract

The rapid development of macrocyclic host molecules, with their unique cavity structures of various sizes, allows them to serve as molecular recognition sites for recognition and functional regulation mediated by host-guest interactions. Additionally, macrocyclic host molecules possess characteristics such as fluorescence enhancement, high biocompatibility, and ease of derivatization, which have led to their widespread application across various fields. However, macrocyclic host molecules inherently lack targeting ability, making specific detection of targets in complex biological environments challenging. The derivatization of macrocyclic molecule compounds can be used to adjust their recognition, physical, and biological properties on one hand; on the other hand, they can form macrocyclic polymers through covalent linkages. Moreover, they can spontaneously form supramolecular self-assemblies through non-covalent interactions. Leveraging these characteristics of macrocyclic host compounds, and combining the advantages of nucleic acid probes that can specifically recognize biological targets, the design and preparation of new nucleic acid probes based on macrocyclic host molecules often exhibit superior performance in terms of high sensitivity, high specificity, and resistance to interference from complex environments. This article systematically reviews the design strategies of nucleic acid probes based on both monomeric and aggregated forms of macrocyclic host molecules, which can be applied to the detection of genes, other targets, as well as cellular and in vivo imaging. Especially, nucleic acid probes based on monomeric macrocyclic host molecules, such as molecular beacons, aptamer probes, and adjacent nucleic acid probes, can target different targets and show broad application potential. Finally, the article looks forward to the challenges and future development directions in this field, suggesting that by integrating multiple responsive elements, the intelligence and logic of nucleic acid probes based on macrocyclic host molecules can be enhanced, and the construction of smart responsive materials can better adapt to the complexity of the in vivo environment.

参考文献

[1]
Amabilino, D. B.; Gale, P. A. Chem. Soc. Rev. 2017, 46, 2376.
[2]
Liu, Z.-C.; Nalluri, S. K. M.; Stoddart, J. F. Chem. Soc. Rev. 2017, 46, 2459.
[3]
You, L.; Zha, D.-J.; Anslyn, E. V. Chem. Rev. 2015, 115, 7840.
[4]
Jiao, Y.; Zhang, X. Acta Chim. Sinica 2018, 76, 659 (in Chinese).
[4]
(焦阳, 张希, 化学学报, 2018, 76, 659.)
[5]
Lou, X.-Y.; Song, N.; Yang, Y.-W. Molecules 2017, 22, 1640.
[6]
Wang, N.-P.; Zhang, Q.-P.; Zhang, Y.-H.; Chen, H.-Y. Acta Chim. Sinica 2003, 61, 597 (in Chinese).
[6]
(王南平, 张其平, 张跃华, 陈洪渊, 化学学报, 2003, 61, 597.)
[7]
Li, Y.-X.; Liu, Y. Acta Chim. Sinica 2023, 81, 928 (in Chinese).
[7]
(李永雪, 刘育, 化学学报, 2023, 81, 928.)
[8]
Liu, J.; Lan, Y.; Yu, Z.-Y.; Tan, C. S.; Parker, R. M.; Abell, C. Scherman, O. A. Acc. Chem. Res. 2017, 50, 208.
[9]
Pinalli, R.; Pedrini, A.; Dalcanale, E. Chem. Soc. Rev. 2018, 47, 7006.
[10]
Jiang, C.-Y.; Song, Z.-R.; Yu, L.-L.; Ye, S.-J.; He, H. Trends Anal. Chem. 2020, 133, 116086.
[11]
Wu, L.-L.; Wang, Y.-D.; Xu, X.; Liu, Y.-L.; Lin, B.-Q.; Zhang, M.-X.; Zhang, J.-L.; Wan, S.; Yang, C.-Y.; Tan, W.-H. Chem. Rev. 2021, 121, 12035.
[12]
Micura, R.; H?bartner, C. Chem. Rev. 2020, 49, 7331.
[13]
Liu, J.-W.; Cao, Z.-H.; Lu, Y. Chem. Rev. 2009, 109, 1948.
[14]
Samanta, D.; Ebrahimi, S. B.; Mirkin, C. A. Adv. Mater. 2020, 32, e1901743.
[15]
Li, L.; Xu, S.-J.; Yan, H.; Li, X.-W.; Yazd, H. S.; Li, X.; Huang, T.; Cui, C.; Jiang, J.-H.; Tan, W.-H. Angew. Chem. Int. Ed. 2021, 60, 2221.
[16]
Tan, W.-F.; He, J.-Q.; Deng, J.-L.; Yang, X.-W.; Cui, L.-J.; Ran, R.-Z.; Du, G.-W.; Jiang, X.-Q. Sci. Rep. 2018, 8, 3309.
[17]
Kim, K.; Lee, C. H.; Park, C. B. Chem. Soc. Rev. 2020, 49, 5446.
[18]
Mandal, S.; Li, Z.; Chatterjee, T.; Khanna, K.; Montoya, K.; Dai, L.-H.; Petersen, C.; Li, L.-D.; Tewari, M.; Alexander, J. B.; Walter, N. G. Acc. Chem. Res. 2021, 54, 388.
[19]
Launonen, I. M.; Lyytik?inen, N.; Casado, J.; Anttila, E. A.; Szabó, A.; Haltia, U. M.; Jacobson, C. A.; Lin, J. R.; Maliga, Z.; Howitt, B.; Strickland, K. C.; Santagata, S.; Elias, K.; D'Andrea, A. D.; Konstantinopoulos, P. A.; Sorger, P. K.; F?rkkil?, A. Nat. Commun. 2022, 13, 835.
[20]
Chang, D.-R.; Zakaria, S.; Esmaeili, S. S.; Chang, Y.-Y.; Filipe, C. D. M.; Soleymani, L.; Brennan, J. D; Liu, M.; Li, Y.-F. Acc. Chem. Res. 2021, 54, 3540.
[21]
Khoo, A.; Liu, L. Y.; Nyalwidhe, J. O.; Semmes, O. J.; Vesprini, D.; Downes, M. R.; Boutros, P. C.; Liu, S. K.; Kislinger, T. Nat. Rev. Urol. 2021, 18, 707.
[22]
Li, M.; Yin, F.-F.; Song, L.; Mao, X.-H.; Li, F.; Fan, C.-H.; Zuo, X.-L.; Xia, Q. Chem. Rev. 2021, 121, 10469.
[23]
Wei, X.-W.; Zhuang, L.-J.; Li, H.-B.; He, C.-J.; Wan, H.; Hu, N.; Wang, P. Small 2020, 16, e2005828.
[24]
Das, J.; Kelley, S. O. Angew. Chem. Int. Ed. 2020, 59, 2554.
[25]
Minopoli, A.; Della, V. B.; Lenyk, B.; Gentile, F.; Tanner, J. A.; Offenh?usser, A.; Mayer, D.; Velotta, R. Nat. Commun. 2020, 11, 6134.
[26]
Tang, Y.; Gao, L.; Feng, W.; Guo, C.; Yang, Q.-F.; Li, F.; Le, X. C. Chem. Soc. Rev. 2021, 50, 11844.
[27]
Madhurantakam, S.; Muthukumar, S.; Prasad, S. ACS Omega 2022, 7, 12467.
[28]
Deng, C. L.; Murkli, S. L.; Isaacs, L. D. Chem. Soc. Rev. 2020, 49, 7516.
[29]
Bidar, N.; Oroojalian, F.; Baradaran, B.; Eyvazi, S.; Amini, M.; Jebelli, A.; Samad, H. S.; Paria, P. P.; Mokhtarzadeh, A.; Guardia, M. L. Trac-trend. Anal. Chem. 2020, 131, 116021.
[30]
Bhalla, N.; Jolly, P.; Formisano, N.; Estrela, P. Essays Biochem. 2016, 60, 1.
[31]
Tan, W.-H.; Wang, K.-M.; Drake, T. J. Curr. Opin. Chem. Biol. 2004, 8, 547.
[32]
Shi, H.; He, X.-X.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Guo, Q.-P.; Huo, X.-Q. Sci. China Chem. 2010, 53, 704.
[33]
Caputo, T. M.; Battista, E.; Netti, P. A.; Causa, F. ACS Appl. Mater. Interfaces 2019, 11, 17147.
[34]
Zhang, Z.; Xiang, X.; Huang, F.-H.; Zheng, M.-M., Xia, X.-Y.; Han, L. Sensor. Actuat. B-chem. 2018, 273, 159.
[35]
Cui, L.; Ke, G.-L.; Lin, X.-Y.; Song, Y.-L.; Zhang, H.-M.; Guan, Z.-C.; Zhu, Z.; Yang, C. J. Methods 2013, 63, 202.
[36]
Bidar, N.; Amini, M.; Oroojalian, F.; Behzad, B.; Samad, H. S.; Shahbazi, M. A.; Mahmoud, H.; Ahad, M.; Michael, R. H.; Miguel, G. Trac-trend. Anal. Chem. 2021, 134, 276.
[37]
Zheng, J.; Li, J.-S.; Gao, X.-X.; Jin, J.-Y.; Wang, K.-M.; Tan, W.-H.; Yang, R.-H. Anal. Chem. 2010, 82, 3914.
[38]
Zhang, Q.-E.; Deng, T.; Li, J.-S.; Xu, W.-J.; Shen, G.-L.; Yu, R.-Q. Biosens. Bioelectron. 2015, 68, 253.
[39]
Harris, D. C.; Saks, B. R.; Jayawickramarajah, J. J. Am. Chem. Soc. 2011, 133, 7676.
[40]
He, L.-L.; Yang, X.-H.; Wang, K.-M.; Wang, Q.; Zhao, F.; Huang, J.; Liu, J.-B. Chem. Commun. (Camb) 2014, 50, 7803.
[41]
Stoltenburg, R.; Reinemann, C.; Strehlitz, B. Biomol. Eng. 2007, 24, 381.
[42]
Fang, X.-H.; Tan, W.-H. Acc. Chem. Res. 2010, 43, 48.
[43]
Tuerk, C.; Gold, L. Science 1990, 249, 505.
[44]
Keefe, A. D.; Pai, S.; Ellington, A. Nat. Rev. Drug Discov. 2010, 9, 537.
[45]
Wang, R.-W.; Zhu, G.-Z.; Mei, L.; Xie, Y.; Ma, H.-B.; Ye, M.; Qing, F.-L.; Tan, W.-H. J. Am. Chem. Soc. 2014, 136, 2731.
[46]
Hicke, B. J.; Stephens, A. W.; Gould, T.; Chang, Y. F.; Lynott, C. K.; Heil, J.; Borkowski, S.; Hilger, C. S.; Cook, G.; Warren, S.; Schmidt, P. G. J. Nucl. Med. 2006, 47, 668.
[47]
Shangguan, D.-H.; Li, Y.; Tang, Z.; Cao, Z. C.; Chen, H. W.; Mallikaratchy, P.; Sefah, K.; Yang, C. J.; Tan, W. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 11838.
[48]
Tan, W.-H.; Donovan, M. J.; Jiang, J.-H. Chem. Rev. 2013, 113, 2842.
[49]
Kuai, H.; Zhao, Z.-L.; Mo, L.-T.; Liu, H.; Hu, X.-X.; Fu, T.; Zhang, X.-B.; Tan, W.-H. J. Am. Chem. Soc. 2017, 139, 9128.
[50]
Jiang, Y.; Pan, X.-S.; Chang, J.; Niu, W.-J.; Hou, W.-J.; Kuai, H.; Zhao, Z.-L.; Liu, J.; Wang, M.; Tan, W.-H. J. J. Am. Chem. Soc. 2018, 140, 6780.
[51]
Mao, Q.-X.; Wang, L.-C.; Xue, D.-D.; Lin, X.-X.; Sun, F.; Xu, P.-C.; Chen, J.-R.; Li, W.-Y.; Li, X.-C.; Yan, F.; Hu, C. Anal. Chem. 2024, 96, 2022.
[52]
Shetty, D.; Khedkar, J. K.; Park, K. M.; Kim, K. Chem. Soc. Rev. 2015, 44, 8747.
[53]
Tian, T.; Song, Y.-Y.; Wei, L.; Wang, J.-Q.; Fu, B.-S.; He, Z.-Y.; Yang, X. R.; Wu, F.; Xu, G.-H.; Liu, S. M.; Li, C.-G.; Wang, S.-R.; Zhou, X. Nucleic Acids Res. 2017, 45, 2283.
[54]
Chen, Y.-Y.; Huang, Z.-H.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2016, 8, 22780.
[55]
Chen, Y.-Y.; Huang, Z.-H.; Zhao, H.-Y.; Xu, J. F.; Sun, Z.-W.; Zhang, X. ACS Appl. Mater. Interfaces 2017, 9, 8602.
[56]
Zhou, X.; Su, X.-Y.; Pathak, P.; Vik, R.; Vinciguerra, B.; Isaacs, L.; Jayawickramarajah, J. J. Am. Chem. Soc. 2017, 139, 13916.
[57]
Ihara, T.; Uemura, A.; Futamura, A.; Shimizu, M.; Baba, N.; Nishizawa, S.; Teramae, N.; Jyo, A. J. Am. Chem. Soc. 2009, 131, 1386.
[58]
Yang, C.; Spinelli, N.; Perrier, S.; Defrancq, E.; Peyrin, E. Anal. Chem. 2015, 87, 3139.
[59]
Schmidt, B.; Barner, K. C. Angew. Chem. Int. Ed. 2017, 56, 8350.
[60]
Liang, Y.; Li, E.; Wang, K.-Y.; Guan, Z.-J.; He, H.-H.; Zhang, L.-L.; Zhou, H.-C.; Huang, F.-H.; Fang, Y. Chem. Soc. Rev. 2022, 51, 8378.
[61]
Albert, S. K.; Thelu, H. V. P.; Golla, M.; Krishnan, N.; Varghese, R. Nanoscale 2017, 9, 5425.
[62]
Li, H.-Y.; Peng, E.-W.; Zhao, F.; Li, J.; Xue, J.-M. Pharmaceutics 2021, 13, 1884.
[63]
Zhao, F.; Yin, H.; Zhang, Z.-X.; Li, J. Biomacromolecules 2013, 14, 476.
[64]
He, L.-L.; Shi, K.-Q.; Liu, X.-L.; Wang, Y.; Song, L.-L.; Wu, D.; Wu, Y.-J.; Xiong, Y.-M.; Huang, P.-L. Sensor. Actuat. B-chem. 2023, 393, 134126.
[65]
Liu, P.; Sun, S.; Guo, X.-C.; Yang, X.-H.; Huang, J.; Wang, K.-M.; Wang, Q.; Liu, J.-B.; He, L.-L. Anal. Chem. 2015, 87, 2665.
[66]
Wang, D. G.; Fan, J. B.; Siao, C. J.; Berno, A.; Young, P.; Sapolsky, R.; Ghandour, G.; Perkins, N.; Winchester, E.; Spencer, J.; Kruglyak, L.; Stein, L.; Hsie, L.; Topaloglou, T.; Hubbell, E.; Robinson, E.; Mittmann, M.; Morris, M. S.; Shen, N.; Kilburn, D.; Rioux, J.; Nusbaum, C.; Rozen, S.; Hudson, T. J.; Lipshutz, R.; Chee, M.; Lander, E. S. Science 1998, 280, 1077.
[67]
Yeh, H. C.; Sharma, J.; Shih, IeM.; Vu, D. M.; Martinez, J. S.; Werner, J. H. A. J. Am. Chem. Soc. 2012, 134, 11550.
[68]
Irizarry, K.; Kustanovich, V.; Li, C.; Brown, N.; Nelson, S.; Wong, W.; Lee, C. J. Nat. Genet. 2000, 26, 233.
[69]
Guo, Y.-H.; Xu, P.; Hu, H.; Zhou, X.-D.; Hu, J.-M. Talanta 2013, 114, 138.
[70]
Liu, G.; Lao, R.-J.; Xu, L.; Xu, Q.; Li, L.-Y.; Zhang, M.; Song, S.-P.; Fan, C.-H. Biosens. Bioelectron. 2013, 42, 516.
[71]
Ihara, T.; Wasano, T.; Nakatake, R.; Arslan, P.; Futamura, A.; Jyo, A. Chem. Commun. (Camb) 2011, 47, 12388.
[72]
Zou, Z.; Qing, Z.-H.; He, X.-X.; Wang, K.-M.; He, D.-G.; Shi, H.; Yang, X.; Qing, T.-P.; Yang, X.-X. Talanta 2014, 125, 306.
[73]
Guo, B.-Y.; Sheng, Y.-Y.; Zhou, K.; Liu, Q.-S.; Liu, L.; Wu, H.-C. Angew. Chem. Int. Ed. 2018, 57, 3602.
[74]
Xu, J.; Gao, Y.-F.; Li, B.-X.; Jin, Y. Biosens. Bioelectron. 2016, 80, 91.
[75]
Yang, H.; Duan, Z.-Z.; Liu, F.-B.; Zhao, Z.-Y.; Liu, S.-M. ACS Macro Lett. 2023, 12, 295.
[76]
Yu, Z.-Z.; Wang, M.-M.; Pan, W.; Wang, H.-Y.; Li, N.; Tang, B. Chem. Sci. 2017, 8, 4896.
[77]
Gu, P.-L.; Li, Y.; Li, L.-Y.; Deng, S.-Y.; Zhu, X.-K.; Song, Y.; Song, E.-Q.; Tan, W.-H. ACS Nano 2023, 17, 24384.
[78]
Cui, R.; Wang, F.; Meng, X.-Y.; Zhou, R.-A.; Sun, Z.-G.; Cheng, Y.; Zhu, H.-Q.; Wang, Y. Adv. Healthc. Mater. 2024, 13, e2401885.
文章导航

/