分散的LiMn6对Li1.17Ni0.17Fe0.17Mn0.49O2层状正极材料结构稳定性及氧化机理的影响研究
收稿日期: 2024-12-21
网络出版日期: 2025-03-06
基金资助
国家自然科学基金(52262039); 内蒙古自治区自然科学基金(2024FX19); 内蒙古自治区直属高校基本科研业务费资助
Influence Research of Decentralized LiMn6 on Structural Stability and Oxidation Mechanism of Li1.17Ni0.17Fe0.17Mn0.49O2 Layered Cathode Materials
Received date: 2024-12-21
Online published: 2025-03-06
Supported by
National Natural Science Foundation of China(52262039); Inner Mongolia Autonomous Region Natural Science Foundation Program(2024FX19); Basic research expenses of universities directly under the Inner Mongolia Autonomous Region
富锂层状氧化物(LLOs)是下一代高容量锂离子电池正极材料的有利竞争者. 然而, LLOs材料常掺杂的Co元素不仅价格昂高, 且环境有害. 因此, 本工作使用价格便宜、环境友好的Fe元素代替Co, 构建了具有聚集和分散LiMn6的Li1.17Ni0.17Fe0.17Mn0.49O2体系. 使用密度泛函理论(DFT)计算方法对体系结构、氧化过程、氧释放焓、过渡金属离子迁移及Fe掺杂作用等进行了研究. 研究发现, 掺杂的Fe激活了更多的氧参与电荷补偿, 分散的LiMn6抑制了由Fe引起的Jahn-Teller效应畸变、氧的释放和Mn4+的迁移, 进而稳定了结构. 特别需要指出的是不同环境O的活性不同, 线性Li-O-Li中O是主要氧化还原中心, 主导氧化还原反应; 其次Fe-O-Li中O也参与氧化, LiTMO2相O前期参与氧化, LiTMO2与Li2MnO3相的边界O后期参与氧化. 本工作为设计无Co且结构稳定容量高的锂离子电池富锂层状正极材料提供了新的见解.
关键词: 分散LiMn6; Fe掺杂; Jahn-Teller效应; Mn4+的迁移; 第一性原理计算
张旭 , 郭鑫 , 张纪阳 , 刘继洪 , 祝佳鹏 , 黄超洋 , 黎明 , 贾桂霄 , 安胜利 . 分散的LiMn6对Li1.17Ni0.17Fe0.17Mn0.49O2层状正极材料结构稳定性及氧化机理的影响研究[J]. 化学学报, 2025 , 83(4) : 369 -376 . DOI: 10.6023/A24120377
Lithium-rich layered oxides (LLOs) are a favorable competitor for the next generation of high-capacity lithium-ion battery cathode materials. However, the doped Co in LLOs materials is not only expensive, but also harmful to the environment. Furthermore, in LLOs cathodes, the aggregation of Li2MnO3 domains and lattice oxygen release lead to severe capacity/voltage degradation, ultimately impeding their commercial viability. Therefore, in this work, we substituted environmentally friendly and cost-effective Fe for Co, and designed two structural models—local distribution (LD) and delocalized distribution (DD) in the Li1.17Ni0.17Fe0.17Mn0.49O2 system. A spin-polarized generalized gradient approximation (GGA) method with the PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional was explored. A 2×2×1 supercell with a total of 96 atoms, namely Li28Fe4Ni4Mn12O48 is selected. We systematically investigated geometrical and electronic structures of DD and LD systems, oxidation processes, oxygen release enthalpy, transition metal ion migration and the role of Fe using density functional theory (DFT) calculations. It was found that the doped Fe activates more interfacial oxygen ions to participate to the charge compensation and disperses oxygen oxidation, thereby sharing the oxidation pressure of oxygen in the Li-O-Li configuration, which would be beneficial for suppressing the release of lattice oxygen. The dispersed LiMn6 in the Li1.17Ni0.17Fe0.17Mn0.49O2 system inhibits the Jahn-Teller distortion caused by Fe and the migration of Mn4+ ions, thus stabilizing the structures. Oxygen in the linear Li-O-Li structure serves as the primary redox center, driving the redox reactions. Additionally, oxygen in Fe-O-Li-based systems also participates in the oxidation process. Specifically, the oxygen in the LiTMO2 phase contributes to the early-stage oxidation, while oxygen at the interface between the LiTMO2 and Li2MnO3 phases plays a role in the later stages of oxidation. This work provides new insights into the design of lithium-rich layered cathode materials without Co and with the high structural stability and the high capacity for lithium-ion batteries.
[1] | Sujith, K.; Moonsu, Y.; Minki, J.; Suhyeon, P.; Seungjun, M.; Junhyeok, K.; Dou, S.-X.; Guo, Z.-P.; Jaephil, C. Adv. Energy Mater. 2017, 7, 1601507. |
[2] | Li, M.; Lu, J.; Chen, Z.; Amine, K. Adv. Mater. 2018, 30, 1800561. |
[3] | Xu, K. Energy Environ. Mater. 2019, 2, 229. |
[4] | Zhang, Y.-L.; Yuan, Z.-X.; Zhang, H.; Zhang, J.-J.; Cui, G.-L. Acta Chim. Sinica 2023, 81, 1724. (in Chinese) |
[4] | (张雅岚, 苑志祥, 张浩, 张建军, 崔光磊, 化学学报, 2023, 81, 1724.) |
[5] | Ouyang, C.-Y.; Shi, S.-Q.; Lei, M.-S. J. Alloys Compd. 2009, 474, 370. |
[6] | Qiu, K.; Yan, M.-X.; Zhao, S.-W.; An, S.-L.; Wang, W.; Jia, G.-X. Acta Chim. Sinica 2021, 79, 1146. (in Chinese) |
[6] | (邱凯, 严铭霞, 赵守旺, 安胜利, 王玮, 贾桂霄, 化学学报, 2021, 79, 1146.) |
[7] | Shen, Y.-t.; Liang, L.-J.; Zhang, S.Q.; Huang, D.-S.; Zhang, J.; Xu, S.-P.; Liang, C.-Y.; Xu, W.-Q. Nanoscale Adv. 2018, 10, 1622. |
[8] | Chang, L.-J.; Yang, W.; Cai, K.-D.; Bi, X.-L.; Wei, A.-L.; Yang, R.-F.; Liu, J.-A. Mater. Horiz. 2023, 10, 4776. |
[9] | Zhou, T.; Yu, X.-R.; Li, F.; Zhang, J.-W.; Liu, B.-W.; Wang, L.-L.; Yang, Y.; Hu, Z.-W.; Ma, J.; Li, C.; Cui, G.-L. Energy Storage Mater. 2023, 55, 691. |
[10] | Hou, X.-D.; Liu, X.-G.; Wang, H.; Zhang, X.-M.; Zhou, J.-D.; Wang, M.-L. Energy Storage Mater. 2023, 57, 577. |
[11] | Ren, X.-Q.; Li, D.-L.; Zhao, Z.-Z.; Chen, G.-Q.; Zhao, K.; Kong, X.-Z.; Li, T.-X. Acta Chim. Sinica 2020, 78, 1268 (in Chinese) |
[11] | (任旭强, 李东林, 赵珍珍, 陈光琦, 赵坤, 孔祥泽, 李童心, 化学学报, 2020, 78, 1268.) |
[12] | Thackeray, M.-M.; Kang, S.-H.; Johnson, C.-S.; Vaughey, J.-T.; Benedek, R.; Hackney, S.-A. J. Mater. Chem. 2007, 17, 3112. |
[13] | Seo, D.-H.; Lee, J.; Urban, A.; Malik, R.; Kang, S.-Y.; Ceder, G. Nat. Chem. 2016, 8, 692. |
[14] | Liu, S.; Wang, B.; Zhang, X.; Zhao, S.; Zhang, Z.; Yu, H. Matter 2021, 4, 1511. |
[15] | Rouxel, J. Comments Inorg. Chem. 1993, 14, 207. |
[16] | Song, J.-H.; Yoon, G.; Kim, B.; Eum, D.; Park, H.; Kim, D.-H.; Kang, K. Adv. Energy Mater. 2020, 10, 2001207. |
[17] | Li, B.; Jiang, N.; Huang, W.; Yan, H.; Zuo, Y.; Xia, D. Adv. Funct. Mater. 2018, 28, 99. |
[18] | Li, B.; Kumar, K.; Roy, I.; Morozov, A.-V.; Emelyanova, O.-V.; Koc, T.; Belin, S.; Cabana, J.; Dedryvere, r.; Abakumov, A.-M.; Tarascon, J.M. Nat. Mater. 2022, 21, 1165. |
[19] | Li, J.; Li, W.-T.; Zhang, C.; Han, C.; Chen, X.-P.; Zhao, H.; Xu, H.-Y.; Jia, G.-X.; Li, Z.-L.; Li, J.-X.; Zhang, Y.-J.; Guo, X.; Gao, F.; Liu, J.; Qiu, X.-P. ACS Nano 2023, 17, 16827. |
[20] | Guo, X.; Li, J.; Zhang, Y.; Zhang, X.; Liu, J.-H.; Li, W.-T.; Lu, L.; Jia, G.-X.; An, S.-L.; Qiu, X.-P. Nano Energy 2024, 123, 109390. |
[21] | Biasi, L.; Schwarz, B.; Brezesinski, T.; Hartmann, P.; Janek, H.-J.; Ehrenberg, H. Adv. Mater. 2019, 31, 1900985. |
[22] | Hausbrand, R.; Cherkashinin, G.; Ehrenberg, H.; Gr?ting, M.; Albe, K.; Hess, C.; Jaegermann, W. Sci. Eng. B. 2015, 192, 3. |
[23] | Hu, S.-J.; Pillai, A.-S.; Liang, G.-M.; Pang, W.-K.; Wang, H.-Q.; Li, Q.-Y.; Guo, Z.-P. Electrochem. Energy Rev. 2019, 2, 277. |
[24] | Lee, W.; Muhammad, S.; Sergey, C.; Lee, H.; Yoon, J.; Kang, Y.-M.; Yoon, W.-S. Angew. Chem. Int. Ed. 2020, 59, 2578. |
[25] | Lu, Y.; Zhang, Q.; Chen, J. Sci. China Chem. 2019, 62, 533. |
[26] | Nayak, P.-K.; Erickson, E.-M.; Schipper, F.; Penki, T.-R.; Munichandraiah, N.; Adelhelm, P.; Sclar, H.; Amalraj, F.; Markovsky, B. Adv. Energy Mater. 2018, 8, 1702397. |
[27] | Xiao, B.-W.; Sun, X.-L. Adv. Energy Mater. 2018, 8, 1802057. |
[28] | Yahia, M.-B.; Vergnet, J.; Saubanère, M.; Doublet, M.-L. Nat. Mater. 2019, 18, 496. |
[29] | House, R.-A.; Maitra, U.; Pérez-Osorio, M.-A.; Lozano, J.-G.; Jin, L.; Somerville, J.-W.; Duda, L.-C.; Nag, A.; Walters, A.; Zhou, K.-J.; Roberts, M.-R.; Bruce, P.-G. Nature 2020, 577, 502. |
[30] | House, R.-A.; Rees, G.-J.; Pérez-Osorio, M.-A.; Marie, J.-J.; Boivin, E.; Robertson, A.-W.; Nag, A.; Garcia-Fernandez, M.; Zhou, K.-J.; Bruce, P.-G. Nat. Energy 2020, 5, 777. |
[31] | Gao, Y.-R.; Wang, X.-F.; Ma, J.; Wang, Z.-X.; Chen, L.-Q. Chem. Mater. 2015, 27, 3456. |
[32] | Wei, H.-Z.; Cheng, X.-L.; Fan, H.-W.; Shan, Q.; An, S.-L.; Qiu, X.-P.; Jia, G.-X. ChemSusChem 2019, 12, 2471. |
[33] | Wu, F.; Kim, G.-T.; Kuenzel, M.; Zhang, H.; Asenbauer, J.; Geiger, D.; Kaiser, U.; Passerini, S. Adv. Energy Mater. 2019, 9, 1902445. |
[34] | Kim, W.-C.; Kim, J.; Kim, J.-H.; Park, D.-H.; Park, Y.-Y.; Jang, J.-S.; Ahn, S.-Y.; Min, K.; Park, K.-W. J. Mater. Chem. A 2024, 12, 1135. |
[35] | Jung, T.-W.; Pyun, D.-H.; Kim, T.-J.; Lee, H.-J.; Park, E.-S.; El-Aty, A.-M.; Hwang, E.-J.; Shin, Y.-K.; Jeong, J.-H. Adv. Medical Sci. 2021, 66, 155. |
[36] | Cheng, X.-L.; Wei, H.-Z.; Hao, W.-J.; Li, H.-Y.; Si, H.-N.; An, S.-L.; Zhu, W.-T.; Jia, G.-X.; Qiu, X.-P. ChemSusChem 2019, 12, 1162. |
[37] | Qiu, B.; Zhang, M.; Wu, L.; Wang, J.; Xia, Y.; Qian, D.; Liu, H.; Hy, S.; Chen, Y.; An, K.; Zhu, Y.; Liu, Z.; Meng, Y.-S. Nat. Commun. 2016, 7, 12108. |
[38] | Boopathi, D.; Swain, D.; Nayak, P.-K. Energy & Fuels. 2023, 37, 19266. |
[39] | Gu, H.; Wang, F.-Y.; Chen, S.; Lan, J.-T.; Wang, J.; Pei, C.-L.; Gong, J.-L. Nat. Commun. 2025, 16, 1008. |
[40] | Wang, S.-C.; Li, W.; Huang, R.-Q.; Guo, Y.-F. Energy Storage Sci. Technol. 2023, 12, 139. (in Chinese) |
[40] | (王绍聪, 李伟, 黄瑞琴, 郭艺飞, 储能科学与技术, 2023, 12, 139.) |
[41] | Teng, Q-W.; Feng, J.-K.; Wu, S.; Sun, J.-Z. Chem. J. Chinese Univ. 1995, 54, 125. (in Chinese) |
[41] | (滕启文, 封继康, 吴师, 孙家钟, 高等学校化学学报, 1995, 54, 125.) |
[42] | Li, X.; Sun, Y.-C.; Zhou, L.; Wang, H.-Y.; Xie, B.-B.; Lu, W.; Ning, J.-Q.; Hu, Y. Mater. Horiz. 2024, 11, 4133. |
[43] | Wu, K.; Luo, W.-W.; Xu, B. Natl. Sci. Rev. 2023, 10, nwad032. |
[44] | Wang, D.; Jiao, Y.; Shi, W.; Pu, B.-W.; Ning, F.-H.; Yi, J.; Ren, Y.; Yu, J.; Li, Y.-J.; Wang, H.-X.; Li, B.; Li, Y.-T.; Nan, C.-W.; Chen, L.-Q.; Shi, S.-Q. Prog. Mater. Sci. 2023, 133, 101055. |
/
〈 |
|
〉 |