化学学报 ›› 2025, Vol. 83 ›› Issue (4): 369-376.DOI: 10.6023/A24120377 上一篇    下一篇

研究论文

分散的LiMn6对Li1.17Ni0.17Fe0.17Mn0.49O2层状正极材料结构稳定性及氧化机理的影响研究

张旭a,b, 郭鑫a,c, 张纪阳a, 刘继洪a, 祝佳鹏a, 黄超洋a, 黎明a, 贾桂霄a,*(), 安胜利a,b   

  1. a 内蒙古科技大学材料科学与工程学院 内蒙古自治区先进陶瓷材料与器件重点实验室 轻稀土资源绿色提取与高效利用教育部重点实验室(内蒙古科技大学) 包头 014010
    b 内蒙古科技大学稀土产业学院 包头 014010
    c 贵州大学 省部共建公共大数据国家重点实验室 贵阳 550025
  • 投稿日期:2024-12-21 发布日期:2025-03-03
  • 基金资助:
    国家自然科学基金(52262039); 内蒙古自治区自然科学基金(2024FX19); 内蒙古自治区直属高校基本科研业务费资助

Influence Research of Decentralized LiMn6 on Structural Stability and Oxidation Mechanism of Li1.17Ni0.17Fe0.17Mn0.49O2 Layered Cathode Materials

Xu Zhanga,b, Xin Guoa,c, Jiyang Zhanga, Jihong Liua, Jiapeng Zhua, Chaoyang Huanga, Ming Lia, Guixiao Jiaa(), Shengli Ana,b   

  1. a School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Inner Mongolia Key Laboratory of Advanced Ceramic Material and Devices, Key Laboratory of Green Extraction & Efficient Utilization of Light Rare-Earth Resources Inner Mongolia University of Science and Technology, Ministry of Education, Baotou 014010, China
    b School of Rare Earth Industry, Inner Mongolia University of Science and Technology, Baotou 014010, China
    c State Key Laboratory of Public Big Data, Guizhou University, Guiyang 550025, China
  • Received:2024-12-21 Published:2025-03-03
  • Contact: E-mail: guixiao.jia@163.com; Tel.: 13015151366
  • Supported by:
    National Natural Science Foundation of China(52262039); Inner Mongolia Autonomous Region Natural Science Foundation Program(2024FX19); Basic research expenses of universities directly under the Inner Mongolia Autonomous Region

富锂层状氧化物(LLOs)是下一代高容量锂离子电池正极材料的有利竞争者. 然而, LLOs材料常掺杂的Co元素不仅价格昂高, 且环境有害. 因此, 本工作使用价格便宜、环境友好的Fe元素代替Co, 构建了具有聚集和分散LiMn6的Li1.17Ni0.17Fe0.17Mn0.49O2体系. 使用密度泛函理论(DFT)计算方法对体系结构、氧化过程、氧释放焓、过渡金属离子迁移及Fe掺杂作用等进行了研究. 研究发现, 掺杂的Fe激活了更多的氧参与电荷补偿, 分散的LiMn6抑制了由Fe引起的Jahn-Teller效应畸变、氧的释放和Mn4+的迁移, 进而稳定了结构. 特别需要指出的是不同环境O的活性不同, 线性Li-O-Li中O是主要氧化还原中心, 主导氧化还原反应; 其次Fe-O-Li中O也参与氧化, LiTMO2相O前期参与氧化, LiTMO2与Li2MnO3相的边界O后期参与氧化. 本工作为设计无Co且结构稳定容量高的锂离子电池富锂层状正极材料提供了新的见解.

关键词: 分散LiMn6, Fe掺杂, Jahn-Teller效应, Mn4+的迁移, 第一性原理计算

Lithium-rich layered oxides (LLOs) are a favorable competitor for the next generation of high-capacity lithium-ion battery cathode materials. However, the doped Co in LLOs materials is not only expensive, but also harmful to the environment. Furthermore, in LLOs cathodes, the aggregation of Li2MnO3 domains and lattice oxygen release lead to severe capacity/voltage degradation, ultimately impeding their commercial viability. Therefore, in this work, we substituted environmentally friendly and cost-effective Fe for Co, and designed two structural models—local distribution (LD) and delocalized distribution (DD) in the Li1.17Ni0.17Fe0.17Mn0.49O2 system. A spin-polarized generalized gradient approximation (GGA) method with the PBE (Perdew-Burke-Ernzerhof) exchange-correlation functional was explored. A 2×2×1 supercell with a total of 96 atoms, namely Li28Fe4Ni4Mn12O48 is selected. We systematically investigated geometrical and electronic structures of DD and LD systems, oxidation processes, oxygen release enthalpy, transition metal ion migration and the role of Fe using density functional theory (DFT) calculations. It was found that the doped Fe activates more interfacial oxygen ions to participate to the charge compensation and disperses oxygen oxidation, thereby sharing the oxidation pressure of oxygen in the Li-O-Li configuration, which would be beneficial for suppressing the release of lattice oxygen. The dispersed LiMn6 in the Li1.17Ni0.17Fe0.17Mn0.49O2 system inhibits the Jahn-Teller distortion caused by Fe and the migration of Mn4+ ions, thus stabilizing the structures. Oxygen in the linear Li-O-Li structure serves as the primary redox center, driving the redox reactions. Additionally, oxygen in Fe-O-Li-based systems also participates in the oxidation process. Specifically, the oxygen in the LiTMO2 phase contributes to the early-stage oxidation, while oxygen at the interface between the LiTMO2 and Li2MnO3 phases plays a role in the later stages of oxidation. This work provides new insights into the design of lithium-rich layered cathode materials without Co and with the high structural stability and the high capacity for lithium-ion batteries.

Key words: disperse LiMn6, Fe doping, Jahn-Teller effect, migration of Mn4+, first principles calculations