研究论文

石墨烯/二氧化钛/磷化铁复合低铂催化剂用于高效甲醇氧化

  • 汪子航 ,
  • 钱静雯 ,
  • 许佳慧 ,
  • 邱浩渝 ,
  • 晏梦珑 ,
  • 刘芸 ,
  • 罗杰 ,
  • 盛毓泰 ,
  • 陈易 ,
  • 王贤保
展开
  • 功能材料绿色制备与应用教育部重点实验室 湖北大学材料科学与工程学院 武汉 430062

收稿日期: 2024-01-14

  网络出版日期: 2024-04-14

Graphene/Titanium dioxide/Iron Phosphide Composite with Low Platinum Catalysts for Efficient Methanol Oxidation

  • Zihang Wang ,
  • Jingwen Qian ,
  • Jiahui Xu ,
  • Haoyu Qiu ,
  • Menglong Yan ,
  • Yun Liu ,
  • Jie Luo ,
  • Yutai Sheng ,
  • Yi Chen ,
  • Xianbao Wang
Expand
  • Key Laboratory of Green Preparation and Application for Functional Materials, Ministry of Education, School of Materials Science and Engineering, Hubei University, Wuhan 430062, China

Received date: 2024-01-14

  Online published: 2024-04-14

摘要

铁钛双金属由于其强烈的协同效应以及双功能机理, 在电化学领域中展现出了优秀的催化活性. 针对目前甲醇燃料电池铂基催化剂成本高、抗CO中毒能力低以及循环稳定性差等制约其商业化应用的关键瓶颈问题, 采用了一种简单的水热、低温磷化以及油浴方法, 成功合成了在石墨烯上负载的低铂/二氧化钛修饰磷化铁复合材料(Pt@rGO/TiO2-FeP)用于甲醇电池阳极催化剂. 循环伏安法(CV)、计时电流法(CA)和多电位阶跃方法(STEP)等研究表明, 使用低温磷化法可以有效提升催化剂的甲醇氧化性能, 在Pt负载量仅为4.3% (w)时, 催化剂的峰电流密度达到2319.5 mA•mg−1, 是商用Pt/C催化剂(390.5 mA•mg−1)的5.9倍. 通过扫描电子显微镜(SEM)、透射电子显微镜(TEM)、能量色散X射线光谱(EDX)、X射线电子衍射(XRD)和X射线光电子能谱(XPS)等表征方法对催化剂进行一系列分析, 发现二氧化钛、磷化铁以及铂纳米颗粒在石墨烯上均匀分布, 因为过渡双金属的负载, 促进Pt的d带中心降低, 有效提升了催化剂的甲醇氧化性能. 本工作合成的Pt@rGO/TiO2-FeP纳米复合材料, 具有优异的甲醇氧化性能和抗CO中毒能力, 为高性能甲醇燃料电池的研发提供了一个全新的思路和实践.

本文引用格式

汪子航 , 钱静雯 , 许佳慧 , 邱浩渝 , 晏梦珑 , 刘芸 , 罗杰 , 盛毓泰 , 陈易 , 王贤保 . 石墨烯/二氧化钛/磷化铁复合低铂催化剂用于高效甲醇氧化[J]. 化学学报, 2025 , 83(3) : 221 -228 . DOI: 10.6023/A24010013

Abstract

Due to the strong synergistic effect and bifunctional mechanism, Fe-Ti bimetallic catalysts have shown excellent catalytic activity in electro-chemistry. In order to solve the catalyst problems of high cost, low anti-toxicity, and poor cycling stability, a simple hydrothermal and low-temperature phosphating method was explored to prepare the graphene/titanium dioxide/iron phosphide composite with low platinum contents (Pt@rGO/TiO2-FeP) for methanol battery anode. Through the cyclic voltammetry (CV), chronoamperometry (CA), and the multipotential step method (STEP), the methanol oxidation performance was effectively enhanced by the low-temperature phosphatization. When the Pt loading at 4.3% (w), the catalyst peak current density reached 2319.5 mA•mg−1, which was 5.9 times higher than that of the commercial Pt/C catalyst (390.5 mA•mg−1). With a series of characterization methods such as scanning electron microscope (SEM), transmission electron microscope (TEM), energy dispersive X-ray spectroscopy (EDX), X-ray electron diffraction (XRD) and X-ray photoelectron spectroscopy (XPS), it was found that the titanium dioxide, iron phosphide and Pt nanoparticles were uniformly distributed on the surface of reduced graphene oxide (rGO). The methanol oxidation performance of this catalyst was improved because of the Fe-Ti bimetallic loading. The Pt@rGO/TiO2-FeP nanocomposites have excellent methanol oxidation performance and CO poisoning resistance, which provide a new idea and practice for the research and development of high-performance methanol fuel cells.

参考文献

[1]
Zhu, Y.; Gao, L.; Li, J. Micromachines (Basel) 2019, 10, 386.
[2]
Zhu, P.; Zhang, Z.; Hao, S.; Zhang, B.; Zhao, P.; Yu, J.; Cai, J.; Huang, Y.; Yang, Z. Carbon 2018, 139, 477.
[3]
Zhou, M.; Weng, Q.; Zhang, X.; Wang, X.; Xue, Y.; Zeng, X.; Bando, Y.; Golberg, D. J. Mater. Chem. A 2017, 5, 4335.
[4]
Zhao, W.; Ma, L.; Gan, M.; Li, X.; Zhang, Y.; Hua, X.; Wang, L. J. Colloid Interface Sci. 2021, 604, 52.
[5]
Zhao, Q.; Zhu, Q.; Liu, Y.; Xu, B. Adv. Funct. Mater. 2021, 31, 56.
[6]
Zhang, X.; An, L.; Yin, J.; Xi, P.; Zheng, Z.; Du, Y. Sci. Rep. 2017, 7, 43590.
[7]
Zhang, W.; Dahbi, M.; Amagasa, S.; Yamada, Y.; Komaba, S. Electrochem. Commun. 2016, 69, 11.
[8]
Zhang, P.; Cai, Z.; You, S.; Wang, F.; Dai, Y.; Lv, Y.; Zhang, Y.; Ren, N.; Zou, J. ACS Sustainable Chem. Eng. 2020, 8, 10461.
[9]
Zhang, D.; Li, G.; Yu, M.; Fan, J.; Li, B.; Li, L. J. Power Sources 2018, 384, 34.
[10]
Yusoff, F.; Suresh, K.; Noorashikin, M. S. IOP Conference Series: Earth and Environmental Science. 2020, 463, 256.
[11]
Yuda, A.; Ashok, A.; Kumar, A. Catal. Rev. 2020, 64, 126.
[12]
Yuan, Z.; Chuai, W.; Guo, Z.; Tu, Z.; Kong, F. Micromachines (Basel). 2019, 10, 542.
[13]
Yu, J.; Cheng, G.; Luo, W. J. Mater. Chem. A 2017, 5, 15838.
[14]
Yin, H.; Zhang, C.; Liu, F.; Hou, Y. Adv. Funct. Mater. 2014, 24, 2930.
[15]
Yildiz, A.; Chouki, T.; Atli, A.; Harb, M.; Verbruggen, S. W.; Ninakanti, R.; Emin, S. ACS Appl. Energy Mater. 2021, 4, 10618.
[16]
Ye, S. H.; He, X. J.; Ding, L. X.; Pan, Z. W.; Tong, Y. X.; Wu, M.; Li, G. R. Chem. Commun. (Camb). 2014, 50, 12337.
[17]
Chen, R.-Y.; Zhen, S.-S.; Lin, Z.-L.; Liu, Y.-Q.; Wang, Z.-L. Acta Chim. Sinica 2021, 79, 1286 (in Chinese).
[17]
(陈日懿, 郑淞生, 林志彬, 刘运权, 王兆林, 化学学报, 2021, 79, 1286.)
[18]
Yao, F.; Bi, J.; Yu, L.; Dai, L.; Xue, W.; Deng, J.; Yao, Z.; Wu, Y.; Sun, J.; Zhu, J. Catal. Sci. Technol. 2023, 13, 3001.
[19]
Yang, Y.; Fu, W.; Bell, C.; Lee, D. C.; Drexler, M.; Nuli, Y.; Ma, Z. F.; Magasinski, A.; Yushin, G.; Alamgir, F. M. ACS Appl. Mater. Interfaces 2021, 13, 34074.
[20]
Yang, F.; Ma, L.; Gan, M.; Zhang, J.; Yan, J.; Huang, H.; Yu, L.; Li, Y.; Ge, C.; Hu, H. Syn. Metals 2015, 205, 23.
[21]
Sun, L.; Wang, H.-L.; Yu, J.-S.; Zhou, X.-G. Acta Chim. Sinica 2020, 78, 888 (in Chinese).
[21]
(孙炼, 王洪磊, 余金山, 周新贵, 化学学报, 2020, 78, 888.)
[22]
Ma, X.-L.; Li, M.; Lei, M. Acta Chim. Sinica 2023, 81, 84 (in Chinese).
[22]
(马雪璐, 李蒙, 雷鸣, 化学学报, 2023, 81, 84.)
[23]
Xie, D.; Xu, Y.; Wang, Y.; Pan, X.; Hark, E.; Kochovski, Z.; Eljarrat, A.; Muller, J.; Koch, C. T.; Yuan, J.; Lu, Y. ACS Nano 2022, 16, 10554.
[24]
Wu, X.; Wu, H. B.; Xiong, W.; Le, Z.; Sun, F.; Liu, F.; Chen, J.; Zhu, Z.; Lu, Y. Nano Energy 2016, 30, 217.
[25]
Wang, Z.; Fan, H.; Liang, H.; Ma, J.; Li, S.; Song, Y.; Wang, R. Electrochim. Acta 2017, 230, 245.
[26]
Wang, Y.; Wang, J.; Dong, J.; Tian, Y. Coatings 2023, 13, 74.
[27]
Wang, Y.; Lim, Y. V.; Huang, S.; Ding, M.; Kong, D.; Pei, Y.; Xu, T.; Shi, Y.; Li, X.; Yang, H. Y. Nanoscale 2020, 12, 4341.
[28]
Wang, X.; Wang, D.; Ma, C.; Yang, Z.; Yue, H.; Zhang, D.; Sun, Z. Chem. Eng. J. 2022, 427, 698.
[29]
Zhang, G.-Q.; Huo, J.-H.; Wang, X.; Guo, S.-W. Acta Chim. Sinica 2023, 81, 6 (in Chinese).
[29]
(张国强, 霍京浩, 王鑫, 郭守武, 化学学报, 2023, 81, 6.)
[30]
Su, Y.-Y.; Tang, L.; Liu, J.; Chen, H.; Zhao, Y, -K.; Liu, F. Precious Met. 2023, 44, 95 (in Chinese).
[30]
(栗云彦, 唐玲, 刘健, 陈慧, 赵云昆, 刘锋, 贵金属, 2023, 44, 95.)
[31]
Montiel, G.; Fuentes-Quezada, E.; Bruno, M. M.; Corti, H. R.; Viva, F. A. RSC Adv. 2020, 10, 30631.
[32]
Mohamed, H. O.; Obaid, M.; Poo, K.-M.; Ali Abdelkareem, M.; Talas, S. A.; Fadali, O. A.; Kim, H. Y.; Chae, K.-J. Chem. Eng. J. 2018, 349, 800.
[33]
Mishra, R.; Gupta, S.; Kumar, A.; Prakash, R. Mater. Chem. Phys. 2016, 183, 606.
[34]
Mathur, A.; Kushwaha, H. S.; Vaish, R.; Halder, A. RSC Adv. 2016, 6, 94826.
[35]
Gu, Y.-Y.; Yu, Y.-C.; Long, A.-C.; Ge, X.-L.; Song, Y.-K.; Meng, M.-F.; Hu, S.-H. Nonferrous Met. Mater. Eng. 2023, 44, 35 (in Chinese).
[35]
(顾颖颖, 于永昌, 龙安椿, 葛宪龙, 宋炎锴, 蒙敏凤, 胡少华, 有色金属材料与工程, 2023, 44, 35.)
[36]
Zhang, M.; Han, J.-X.; Wang, Y.-X.; Chen, Y.-L.; Ren, L.-X. Zhejiang Chem. Ind. 2023, 54, 7 (in Chinese).
[36]
(张曼, 韩继续, 王盈雪, 陈俞霖, 任立新, 浙江化工, 2023, 54, 7.)
[37]
Du, Y.; Weng, W.; Zhang, Z.; He, Y.; Xu, J.; Yang, T.; Bao, J.; Zhou, X. Chin. J. Chem. 2021, 39, 1878.
[38]
Guo, S.-Q.; Sun, Y.-X.; Li, C.-J. Chin. J. Mech. Eng. 2022, 44, 625 (in Chinese).
[38]
(郭仕权, 孙亚昕, 李从举, 工程科学学报, 2022, 44, 625.)
[39]
Li, Q.; Yuan, J.; Tan, Q.; Wang, G.; Feng, S.; Liu, Q.; Wang, Q. New J. Chem. 2020, 44, 5396.
[40]
Zhang, J.; Liang, P.-J.; Tang, M.-E.; Xu, X.-L.; Zhang, X.-M. J. Funct. Mater. 2023, 54, 5066 (in Chinese).
[40]
(张均, 梁平娟, 汤木娥, 许新兰, 张贤明, 动能材料, 2023, 54, 5066.)
[41]
Huang, Y.-F.; Xu, B.; Zeng, L.-W.; Lin, D.-H. J. Shanghai. Pol. Unive. 2023, 40, 1 (in Chinese).
[41]
(黄郁夫, 许波, 曾令文, 林东海, 上海第二工业大学学报, 2023, 40, 1.)
[42]
Baruah, B.; Kumar, A. Synthetic Metals 2018, 245, 74.
[43]
Zhang, Z.-F.; Tian, X.-Y.; Sun, H. Appl. Chem. Ind. 2023, 52, 2556 (in Chinese).
[43]
(张振峰, 田心瑶, 孙海, 应用化工, 2023, 52, 2556.)
[44]
Li, Y.; Hui, J.; Kawchuk, J.; O'Brien, A.; Jiang, Z.; Hoorfar, M. Fuel Cells 2019, 19, 43.
[45]
Li, X.; Deng, C.; Wang, H.; Si, J.; Zhang, S.; Huang, B. ACS Appl. Mater. Interfaces 2021, 13, 7297.
文章导航

/