Covalent organic frameworks (COFs) are crystalline organic materials connected by covalent bonds. Due to their pre-designed structures similar to the modular assembly of Lego bricks, adjustable optical and electronic properties, high chemical and thermal stability and so on, COFs have been proved to be promising photocatalysts for the production of hydrogen peroxide (H2O2). However, similar to other photocatalysts, COFs also suffer from the common challenge of inefficient separation of photogenerated charge carriers. Constructing COFs with high conjugation and electron donor-acceptor (D-A) structure is an effective strategy to improve the separation and transfer capacity of photogenerated charges. Herein, through a simple yet effective one-step solvothermal synthesis approach, two kinds of sp2-carbon conjugated COFs with D-A structure (designated as BBpy-COF and BBph-COF) were successfully fabricated by the Knoevenagel condensation reaction, and their photocatalytic performance towards H2O2 production was evaluated. BBpy-COF with the linker of 2,2'-([2,2'-bipyridine]-5,5'-diyl) diacetonitrile (Bpy-2CN) displayed a high photocatalytic H2O2 production rate of 1394.7 µmol g-1 h-1, with 2.12-fold enhancement compared to BBph-COF with the linker of 4,4'-biphenyldiacetonitrile (Bph-2CN). Through a series of experiments such as the electron paramagnetic resonance (EPR) spectroscopy and rotating disk electrode (RDE) measurements as well as density functional theory (DFT) calculations, the photocatalytic mechanism was revealed that compared with BBph-COF, by virtue of the D-A structure constructed by the strong electron donor benzo [1,2-b:3,4-b':5,6-b''] trithiophene-2,5,8-tricarbaldehyde (Btt) with the strong electron acceptor bipyridine (Bpy) and the C=C double bond connection to enhance the conjugation of the framework, BBpy-COF possessed a stronger electron push-pull effect to enhance the visible-light absorption capacity and accelerate the separation and migration of photogenerated e--h+ pairs. Ultimately, leveraging Bpy as active sites of oxygen reduction reaction (ORR), BBpy-COF achieved efficient photocatalytic H2O2 production via a two-step single-electron ORR pathway. This work employs an innovative ‘triple-in-one’ integration strategy that combines D-A structure construction, the C=C double bond linkages and embedding Bpy as ORR active sites into the skeleton of COFs, offering valuable insights and references for the rational design and fabrication of high-performance COFs-based photocatalytic materials.
[1] Yu X.; Huang W.; Li, Y. Acta Chim. Sinica2022, 80, 1494(in Chinese).
(于潇涵, 黄伟, 李彦光, 化学学报, 2022, 80, 1494.)
[2] Wang D.; Feng B.; Zhang X.; Liu Y.; Pei Y.; Qiao M.; Zong, B. Acta Chim. Sinica2022, 80, 772(in Chinese).
(王丹, 封波, 张晓昕, 刘亚楠, 裴燕, 乔明华, 宗保宁, 化学学报, 2022, 80, 772.)
[3] Dong W.; Qin Z.; Liu X.; Li, L. Chin. J. Chem.2025, 43, 1504.
[4] Chi W.; Liu B.; Dong Y.; Zhang J.; Sun X.; Pan C.; Zhao H.; Ling Y.; Zhu, Y. Appl. Catal. B Environ. Energy.2024, 355, 124077.
[5] Kou J.; Wang G.; Guo H.; Li L.; Fang J.; Ma J.; Dong, Z. Appl. Catal. B Environ. Energy.2024, 352,124020.
[6] Wang H.; Yang C.; Chen F.; Zheng G.; Han, Q. Angew. Chem. Int. Ed.2022, 61, e202202328.
[7] Zhang F.; Wang Y.; Zhao Q.; Zhao H.; Dong X.; Gu X.; Sheng H.; Sarina S.; Lang X. ACS Appl. Mater. Interfaces.2025, 17,1097.
[8] Zou L.; Sa R.; Zhong H.; Lv H.; Wang X.; Wang R. ACS Catal.2022, 12, 3550.
[9] Sun H.-H.; Zhou Z.-B.; Fu Y.; Qi Q.-Y.; Wang Z.-X.; Xu S.; Zhao, X. Angew. Chem. Int. Ed.2024, 63, e202409250.
[10] Xiao J.-Z.; Zhao Z.-H.; Zhang N.-N.; Che H.-T.; Qiao X.; Zhang G.-Y.; Chu X.; Wang Y.; Dong H.; Zhang F.-M. Chin. J. Catal.2025, 44, 219.
[11] Mou Y.; Wu X.; Qin C.; Chen J.; Zhao Y.; Jiang L.; Zhang C.; Yuan X.; Ang E. H.; Wang, H. Angew. Chem. Int. Ed.2023, 62, e202309480.
[12] Seo J.-M.; Noh H.-J.; Jeong H. Y.; Baek J.-B. J. Am. Chem. Soc.2019, 141, 11786.
[13] Qian Y.; Han Y.; Zhang X.; Yang G.; Zhang G.; Jiang H.-L. Nat. Commun.2023, 14, 3083.
[14] Kandambeth S.; Shinde D. B.; Panda M. K.; Lukose B.; Heine T.; Banerjee, R. Angew. Chem. Int. Ed.2013, 52, 13052.
[15] Halder A.; Karak S.; Addicoat M.; Bera S.; Chakraborty A.; Kunjattu S. H.; Pachfule P.; Heine T.; Banerjee, R. Angew. Chem. Int. Ed.2018, 57,5797.
[16] Ascherl L.; Sick T.; Margraf J. T.; Lapidus S. H.; Calik M.; Hettstedt C.; Karaghiosoff K.; Döblinger M.; Clark T.; Chapman K. W.; Auras F.; Bein T. Nat. Chem.2016, 8, 310.
[17] Xu H.; Gao J.; Jiang D. Nat. Chem.2015, 7, 905.
[18] Chen R.; Shi J.-L.; Ma Y.; Lin G.; Lang X.; Wang, C. Angew. Chem. Int. Ed.2019, 58, 6430.
[19] Li S.; Xu S.; Lin E.; Wang T.; Yang H.; Han J.; Zhao Y.; Xue Q.; Samorì P.; Zhang Z.; Zhang T. Nat. Chem.2025, 17, 226.
[20] Liao Q.; Sun Q.; Xu H.; Wang Y.; Xu Y.; Li Z.; Hu J.; Wang D.; Li H.; Xi, K. Angew. Chem. Int. Ed.2023, 62, e202310556.
[21] Liu J.-C.; Tuo C.; Xiao W.-Y.; Qi M.-Y.; Yusran Y.; Wang Z.-T.; Li H.; Guo C.-S.; Song J.-L.; Qiu S.-L.; Xu Y.-J.; Fang, Q. Angew. Chem. Int. Ed.2025, 64, e202416240.
[22] Liu W.; Zhang Y.; Wang J.; Shang X.; Zhang C.; Wang, Q. Coord. Chem. Rev.2024, 516, 215997.
[23] Liu W.; Li Y.; Duan F.; Liu H.; Ren Y.; Yan S.; Lu S.; Du M.; Chen X.; Wang, J. J. Mater. Chem. A.2025, 13, 786.
[24] Gu Y.-Y.; Wang J.; Tang Q.; Wei H.; Ning J.; Lan X.; Wang X.; Li X.; Jia Y.; Wang S.; Hao L. ACS Catal.2024, 14,11262.
[25] Dai L.; Dong A.; Meng X.; Liu H.; Li Y.; Li P.; Wang, B. Angew. Chem. Int. Ed.2023, 62, e202300224.
[26] Xu M.; Yu S.; Li W.; Li C.; Peng Y.; Yu F. Polym. Chem.2023, 14, 5133.
[27] Wei H.; Ning J.; Cao X.; Li X.; Hao, L. J. Am. Chem. Soc.2018, 140, 11618.
[28] Gu C.-C.; Ni C.-Q.; Wu R.-J.; Deng L.; Zou J.; Li H.; Tong C.-Y.; Xu F.-H.; Wang B.-C.; Zhu, R.-L. J. Colloid Interface Sci.2024, 658, 450.
[29] Li Z.; Deng T.; Ma S.; Zhang Z.; Wu G.; Wang J.; Li Q.; Xia H.; Yang S.-W.; Liu, X. J. Am. Chem. Soc.2023, 145, 8364.
[30] Li J.; Jia J.; Suo J.; Li C.; Wang Z.; Li H.; Valtchev V.; Qiu. S.; Liu X.; Fang, Q. J. Mater. Chem. A.2023, 11,18349.
[31] Qin C.; Wu X.; Tang L.; Chen X.; Li M.; Mou Y.; Su B.; Wang S.; Feng C.; Liu J.; Yuan X.; Zhao Y.; Wang H. Nat. Commun.2023, 14, 5238.
[32] Liu J.; Zhang W.; Shen J.; Feng L.; Yao Y.; Peng Q.Angew. Chem. Int. Ed. 2025, e202424720.
[33] Ji R.; Dong Y.; Sun X.; Pan C.; Yang Y.; Zhao H.; Zhu, Y. Appl. Catal. B Environ. Energy.2024, 349, 123884.
[34] Huang F.; Wang Y.; Dong X.; Lang, X. J. Mater. Chem. A.2024, 12, 7036.
[35] Yue J.-Y.; Song L.-P.; Fan Y.-F.; Pan Z.-X.; Yang P.; Ma Y.; Xu Q.; Tang, B. Angew. Chem. Int. Ed.2023, 62, e202309624.
[36] Jin X.; Lv C.; Zhou X.; Ye L.; Xie H.; Liu Y.; Su H.; Zhang B.; Chen G. ChemSusChem.2019, 12, 2740.
[37] Shiraishi Y.; Takii T.; Hagi T.; Mori S.; Kofuji Y.; Kitagawa Y.; Tanaka S.; Ichikawa S.; Hirai T.Nat. Mater. 2019, 18, 985.
[38] Du J.; Feng S.; Zhang J.; Zhang Y.; Wang S.; Han L.; Chen, J. Chin. J. Org. Chem.2022, 42, 2967(in Chinese).
(杜俊平, 封珊珊, 张婕, 张永辉, 王诗文, 韩莉峰, 陈俊利, 有机化学, 2022, 42, 2967.)
[39] Liu X.; Li H.; Xu N.; Guo Y.; Zhang X.; Wang, X. Chin. J. Chem.2024, 42, 2970.
[40] Xiang Y.; Xia Z.; Hu W.; Tong C.; Xiao Y.; Lü, C. Chin. J. Chem. 2024, 42, 1975.
[41] Yan S.; Zhang L.; Shi S.; Ren Y.; Liu W.; Li Y.; Duan F.; Lu S.; Du M.; Chen, M. Chem. Res. Chinese Universities.2025, 41, 121.
[42] Zhang H.; Wei W.; Chi K.; Zheng Y.; Kong X. Y.; Ye L.; Zhao Y.; Zhang, K. A. L. ACS Catal.2024, 14, 17654.
[43] Liu Y.; Han W.-K.; Chi W.; Mao Y.; Jiang Y.; Yan X.; Gu, Z.-G. Appl. Catal. B Environ.2023, 331, 122691.
[44] Liu J.; Li C.; Liu Y.; Wang Y.; Fang, Q. Acta Chim. Sinica2023, 81, 884(in Chinese).
(刘建川, 李翠艳, 刘耀祖, 王钰杰, 方千荣, 化学学报, 2023, 81, 884.)
[45] Luo X.; Zhou S.; Zhou S.; Wang D.; Zhang Y.; Hao X.; Liu G.; Jin L.; Liu P.; Gu, P. Sep. Purif. Technol.2025, 355, 129774.
[46] Pan C.; Bian G.; Zhang Y.; Lou Y.; Zhang Y.; Dong Y.; Xu J.; Zhu, Y. Appl. Catal. B Environ.2022, 316, 121675.