综述

金属有机框架复合材料

  • 高春 ,
  • 张松涛 ,
  • 庞欢
展开
  • a江苏商贸职业学院继续教育学院 南通 226011;
    b扬州大学化学化工学院 测试中心 扬州 225009;
    c南京大学配位化学国家重点实验室 南京 210023
★ 中国青年化学家专辑.
高春,男,江苏商贸职业学院继续教育学院副院长,副教授,长期从事化学教育研究和高校继续教育工作. 张松涛,男,扬州大学测试中心助理研究员. 2016年毕业于南京航空航天大学, 获材料物理与化学博士学位. 近年来主要从事开发应用于电化学储能的MOF基功能材料和介孔基纳米复合材料. 庞欢,男,扬州大学化学化工学院院长,二级教授,博士生导师. 于2011年获得南京大学理学博士学位. 为教育部青年长江学者、新世纪优秀人才;江苏省杰出青年;英国皇家化学学会会士;全球高被引学者. 兼任《国家科学评论》学科编辑组成员;Nano Research、Rare Metals等期刊编委. 主要从事纳米配合物及其衍生物的合成、功能应用研究,尤其在纳米金属有机框架 (MOF) 的电化学研究.

收稿日期: 2025-04-12

  网络出版日期: 2025-06-20

基金资助

国家自然科学基金项目(52371240)和江苏省高等学校优势学科发展的资助.

Metal-Organic Framework Composites

  • Gao Chun ,
  • Zhang Songtao ,
  • Pang Huan
Expand
  • aJiangsu Commercial Vocational College, Nantong, 226011;
    bCollege of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009;
    cState Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing, 210023

Received date: 2025-04-12

  Online published: 2025-06-20

Supported by

National Natural Science Foundation of China (52371240) and the Priority Academic Program Development of Jiangsu Higher Education Institutions

摘要

由于环境问题日益加剧, 能源需求持续增长, 传统材料已难以满足这些领域的进一步需求. 金属有机框架(MOFs)材料因其多孔结构、大比表面积和多功能的特性, 在这些领域中展现出巨大的潜力. 然而, 纯MOFs固有的不稳定性和低导电性限制了其实际应用. 基于MOFs的复合材料在保留单纯MOFs优点的同时, 整合了客体材料(包括无机碳材料、金属氧化物和聚合物等)的功能, 在未来能源和环境等科学领域展现出重要的研究价值. 本文全面综述了MOF复合材料在电化学储能和吸附领域的应用, 并从维度角度分析了基于MOFs的各种复合材料的物理和化学性质. 在此背景下, 我们不仅强调了MOF复合材料的优势, 还对其应用效果进行了详细分析和客观概述.

本文引用格式

高春 , 张松涛 , 庞欢 . 金属有机框架复合材料[J]. 化学学报, 0 : 1 -1 . DOI: 10.6023/A25040117

Abstract

With the intensification of environmental challenges and the ever-growing global energy demand, conventional materials are increasingly unable to satisfy the stringent requirements in energy and environmental fields. Metal-organic frameworks (MOFs), as a class of crystalline porous materials composed of metal nodes and organic ligands, have emerged as promising candidates due to their tunable pore structures, exceptionally high surface areas, and versatile functionalities. These features enable MOFs to play a significant role in applications such as adsorption and electrochemical energy storage. However, the poor intrinsic electrical conductivity and limited structural stability of pristine MOFs restrict their practical implementation. To address these limitations, MOF-based composites have been developed by integrating MOFs with a variety of guest materials including inorganic carbonaceous materials (e.g., graphene, carbon nanotubes), metal oxides, and conductive polymers. These composites not only retain the inherent advantages of MOFs but also enhance conductivity, mechanical robustness, and chemical stability through synergistic interactions. Importantly, the integration strategies often involve the construction of heterostructures, interface engineering, and the introduction of chemically bonded interfaces, thereby promoting efficient charge transfer and long-term cycling stability. This review offers a comprehensive summary of MOF composites and their emerging applications in electrochemical energy storage systems, such as supercapacitors, lithium-ion batteries, lithium-sulfur batteries and aqueous zinc ion batteries, as well as in environmental adsorption processes targeting heavy metals and CO2 capture. The discussion also emphasizes dimensional design from zero-dimensional (0D) nanoparticles to three-dimensional (3D) frameworks, each exhibiting unique advantages in terms of electron transport, ion diffusion, and active site accessibility. We analyze the relationships of these composites, highlighting how different combinations and morphologies (e.g., core-shell architectures, layered hybrids, and flexible films) influence their functional performance. MOF composites represent a promising frontier for the development of next-generation functional materials. Their tunable dimensionality, enhanced chemical properties and multifunctional adaptability open up new avenues for solving urgent global issues in energy sustainability and environmental remediation.

参考文献

[1] Wen Z.; Mu X.; Sun X.; Xu Z.; Zheng M.; Zhou H.; He P. Angew. Chem. Int. Ed. 2025, 64(16), e202424121.
[2] Zhu W.; Hu W.; Wei Y.; Zhang Y.; Pan K.; Zhang S.; Hang X.; Zheng M.; Pang H. Adv. Funct. Mater. 2024, 34(49), 2409390.
[3] Ni H.; Wang Y.; Yao K.; Wang L.; Huang J.; Xiao Y.; Chen H.; Liu B.; Yang C. Y.; Zhao J. Nat.Commun. 2024, 15(1), 1.
[4] Ilić N.; Tan K.; Mayr F.; Hou S.; Aumeier B. M.; Morales E. M.C.; Hübner, U.; Cookman, J.; Schneemann, A.; Gagliardi, A.; Drewes, J. E.; Fischer, R. A.; Mukherjee, S. Adv. Mater. 2025, 37(6), 2413120.
[5] Chen Y.; Zhang S.; Chen Y.; Ding H.; Yao S.; Tang Y.; Qiu Z.; Xu K.; Hu Y.; Gong H.; Hu Y.; Pang H.Nano Res. 2025, 18(6), 94907446.
[6] Zhou H.; Gu S.; Lu Y.; Zhang G.; Li B.; Dou F.; Cao S.; Li Q.; Sun Y.; Shakouri M.; Pang H. Adv.Mater. 2024, 36(29), 2401856.
[7] Yao S.; Zhang S.; Zhang G.; Tang Y.; Zhu R.; Peng Y.; Chen Y.; Pang H. Inorg.Chem. 2023, 62(39), 16038-16046.
[8] He Y.; Tan Y.; Zhang J. Acta Chim. Sinica 2014, 72(12), 1228.
[9] Noman M.; Saqib Q. M.; Ameen S.; Patil S. R.; Patil C. S.; Kim J.; Ko Y.; Kim B.; Bae J. Adv.Sci. 2024, 11, 2404993.
[10] Li Y.; Zou B.; Xiao A.; Zhang H. Chin.J. Chem. 2017, 35(10), 1501-1511.
[11] Xie Q.; Ou H.; Yang Q.; Lin X.; Zeb A.; Li K.; Chen X.; Ma G.Dalton Trans. 2021, 50(28), 9669-9684.
[12] Jiao L.; Seow J. Y.R.; Skinner, W. S.; Wang, Z. U.; Jiang, H.-L. Mater. Today 2019, 27, 43-68.
[13] Guo C.; Ma X.; Wang B. Acta Chim. Sinica 2021, 79(8), 967.
[14] Zhang J.; Li P.; Zhang X.; Ma X.; Wang B. Acta Chim. Sinica 2020, 78(7), 597.
[15] Dai M.; Wang J.; Li L.; Wang Q.; Liu M.; Zhang Y. Acta Chim. Sinica 2020, 78(4), 355.
[16] Carbonell C.;Linares-Moreau, M.; Borisov, S. M.; Falcaro, P. Adv. Mater. 2024, 36, 2408770.
[17] Oh H.; Lee G.; Oh M. Small 2024, 20(25), 2306543.
[18] Zhou X.; Wang T.; He D.; Chen P.; Liu H.; Lv H.; Wu H.; Su D.; Pang H.; Wang C. Angew. Chem. Int. Ed. 2024, 63, e202408989.
[19] Yang G.; Wang D.; Wang Y.; Hu W.; Hu S.; Jiang J.; Huang J.; Jiang H.-L.J. Am. Chem. Soc. 2024, 146(15), 10798-10805.
[20] Zhang C.; Xie C.; Gao Y.; Tao X.; Ding C.; Fan F.; Jiang H. Angew. Chem. Int. Ed. 2022, 61(28), e202204108.
[21] Mohanty A.; Kang K.; Saravanakumar B.; Ramadoss A.; Jang J. Small 2024, 20(23), 2308771.
[22] Su Q.; Li J.; Yuan H.; Wang B.; Wang Y.; Li Y.; Xing Y. Chem. Eng. J. 2022, 427, 131594.
[23] Shokouhfar N.; Kilaparthi S. K.; Barras A.; Abraham B. M.; Addad A.; Roussel P.; Bhatt S.; Jain S. L.; Szunerits S.; Morsali A.; Boukherroub R. Inorg.Chem. 2024, 63, 2327-2339.
[24] Yang Z.; Belmabkhout Y.; McHugh, L. N.; Ao, D.; Sun, Y.; Li, S.; Qiao, Z.; Bennett, T. D.; Guiver, M. D.; Zhong, C. Nat. Mater. 2023, 22(7), 888-894.
[25] Huang G.; Chen Y.; Jiang H. Acta Chim. Sinica 2016, 74(2), 113.
[26] Sun D.; Mo F.; Zhou Y.; Lu J.; Duan H. Materials & Design 2024, 239, 112804.
[27] Kaur R.; Rana A.; Singh R. K.; Chhabra V. A.; Kim K.-H.; Deep A. RSC Adv. 2017, 7(46), 29015-29024.
[28] Chen Y.; Liang J.; Su Y.; Zhu G.; Xu H.; Ding H.; Zhang G.; Yu D.; Shen Z.; Zhang Y.; Huang W.; Pang H. Sci.China Chem. 2025, 68, 2378-2387.
[29] Yang D.; Liang Z.; Tang P.; Zhang C.; Tang M.; Li Q.; Biendicho J. J.; Li J.; Heggen M.; Dunin‐Borkowski, R. E.; Xu, M.; Llorca, J.; Arbiol, J.; Morante, J. R.; Chou, S.; Cabot, A. Adv. Mater. 2022, 34(10), 2108835.
[30] Lee G.; Lee S.; Oh S.; Kim D.; Oh M. J. Am. Chem. Soc. 2020, 142(6), 3042-3049.
[31] Lyu L.; Zhao Y.; Wei Y.; Wang H. Acta Chim. Sinica 2021, 79(7), 869.
[32] Liu Z.; Hu R.; Yu R.; Zheng M.; Zhang Y.; Chen X.; Shen L.; Xia Y.Nano Lett. 2024, 24, 4908-4916.
[33] Hai G.; Jia X.; Zhang K.; Liu X.; Wu Z.; Wang G. Nano Energy 2018, 44, 345-352.
[34] Pi Y.; Qiu Z.; Fan Y.; Mao Q.; Zhang G.; Wang X.; Chang H.-H.; Chen H.-J.; Chen T.-Y.; Chen H.-Y.; Zhang S.; Shakouri M.; Pang H.Nano Lett. 2024, 24(43), 13760-13768.
[35] Zhang S.; Li Y.; Zhuang X.; Hu Y.; Xu K.; Zhang G.; Pi Y.; Tang Y.; Hu J.; Zang R.; Qiu Z.; Zhou H.; Yu F.; Shakouri M.; Pang H. Adv.Mater. 2025, 37(9), 2418344.
[36] Liu Y.; Xin N.; Yang Q.; Shi W. Journal of Colloid and Interface Science 2021, 583, 288-298.
[37] Safy M. E.A.; Haikal, R. R.; Elshazly, B.; Hamdy, A.; Ali, F.; Maarouf, A. A.; Alkordi, M. H. Appli. Mater. Today 2020, 19, 100604.
[38] Wang B.; Liu S.; Liu L.; Song W.-W.; Zhang Y.; Wang S.-M.; Han Z.-B.J. Mater. Chem. A 2021, 9(5), 2948-2958.
[39] Zhou H.; Zhu G.; Dong S.; Liu P.; Lu Y.; Zhou Z.; Cao S.; Zhang Y.; Pang H. Adv.Mater. 2023, 35(19), 2211523.
[40] Zhang S.; Zheng M.; Tang Y.; Zang R.; Zhang X.; Huang X.; Chen Y.; Yamauchi Y.; Kaskel S.; Pang H. Adv. Funct. Mater. 2022, 32(40), 2204714.
[41] Wu H.; Zhang W.; Kandambeth S.; Shekhah O.; Eddaoudi M.; Alshareef H. N. Adv. Energy Mater. 2019, 9(21), 1900482.
[42] Liu L.; Yan Y.; Cai Z.; Lin S.; Hu X. Adv.Mater. Interfaces 2018, 5(8), 1701548.
[43] Ibrahim I.; Zheng S.; Foo C. Y.; Huang N. M.; Lim H. N.J. Energy Storage 2021, 43, 103304.
[44] Saxena N.; Bondarde M. P.; Lokhande K. D.; Bhakare M. A.; Dhumal P. S.; Some S. Chem. Phys. Lett. 2024, 856, 141605.
[45] Kumaraguru S.; Yesuraj J.; Mohan S. Composites Part B: Engineering 2020, 185, 107767.
[46] Zheng S.; Li Q.; Xue H.; Pang H.; Xu Q. Nati. Sci. Rev. 2020, 7(2), 305-314.
[47] Li G.; Cai H.; Li X.; Zhang J.; Zhang D.; Yang Y.; Xiong J. ACS Appl. Mater. Interfaces 2019, 11(41), 37675-37684.
[48] Yao S.; Jiao Y.; Sun S.; Wang L.; Li P.; Chen G. ACS Sustainable Chem.Eng. 2020, 8(8), 3191-3199.
[49] Qing L.; Jiang J. ACS Nano 2023, 17(17), 17122-17130.
[50] Shao L.; Wang Q.; Ma Z.; Ji Z.; Wang X.; Song D.; Liu Y.; Wang N. J. Power Sources 2018, 379, 350-361.
[51] Yue T.; Douka A. I.; Qi K.; Qiu Y.; Guo X.; Xia B. Y.J. Mater. Chem. A 2021, 9(38), 21799-21806.
[52] Singh J.; Choudhury A.; Ahmad Md. W.; Syed A.; AL-Shwaiman, H. A.; Subramaniam, M.; Yang, D.-J. J. Alloys Compd. 2025, 1014, 178638.
[53] Liu F.; Zuo P.; Li J.; Shi P.; Shao Y.; Chen L.; Tan Y.; Ma T. J.Energy Chem. 2024, 93, 282-288.
[54] Chai Y.; Ning D.; Zhou D.; Gao J.; Ni J.; Zhang G.; Gao R.; Wu W.; Wang J.; Li Y. Nano Energy 2024, 130, 110160.
[55] Hu Q.; Han G.; Wang A.; Gao K.; Liao J.; Ding M.; Zhou Y.; Dominko R.; Wang H.; Yao J. Chem. Eng. J. 2024, 497, 154608.
[56] Yu Y.; Zhang X. Acta Chim. Sinica 2020, 78(12), 1434.
[57] Chang Z.; Qiao Y.; Yang H.; Deng H.; Zhu X.; He P.; Zhou H. Acta Chim. Sinica 2021, 79(2), 139.
[58] Li S.; Chen Y.; Leng X.; Yang M.; Arifeen W. U.; Ko T. J. Chem. Eng. J. 2024, 500, 157209.
[59] Zhu H.; Yu Z.; Song Y.; Liu S.; Zhao L.; Guo J.; Li W.; Han X.; Wen Z. ChemPhysChem 2025, 26, e202401007.
[60] Qiao Y.; Hu Y.; Qian Z.; Qu M.; Liu Z. J.Colloid Interface Sci. 2025, 684, 678-689.
[61] Shi Y.; Song G.; Yang B.; Tang Y.; Liu Z.; Zhang Z.; Shakouri M.; Cheng J.; Pang H. Adv.Mater. 2025, 37, 2416665.
[62] Ma Y.; Wei L.; He Y.; Yuan X.; Su Y.; Gu Y.; Li X.; Zhao X.; Qin Y.; Mu Q.; Peng Y.; Sun Y.; Deng Z. Angew. Chem. Int. Ed. 2022, 61(12), e202116291.
[63] Gu Z.; Miao Y.; Li W.; Chen Y.; Xia X.; Chen G.; Liu H. ACS Appl.Energy Mater. 2020, 3(4), 3815-3825.
[64] Dai Z.; Long Z.; Li R.; Shi C.; Qiao H.; Wang K.; Liu K. ACS Appl.Energy Mater. 2020, 3(12), 12378-12384.
[65] Han Y.; Liu Z.; Zheng F.; Bai Y.; Zhang Z.; Li X.; Xiong W.; Zhang J.; Yuan A. J.Alloys Compd. 2021, 881, 160531.
[66] Li M.; Cheng S.; Zhang J.; Huang C.; Gu J.; Han J.; Xu X.; Chen X.; Zhang P.; You Y. Chem. Eng. J. 2024, 487, 150709.
[67] Jiang Q.; Xiong P.; Liu J.; Xie Z.; Wang Q.; Yang X.; Hu E.; Cao Y.; Sun J.; Xu Y.; Chen L. Angew. Chem. Int. Ed. 2020, 59(13), 5273-5277.
[68] Zhang C.; Shen L.; Shen J.; Liu F.; Chen G.; Tao R.; Ma S.; Peng Y.; Lu Y. Adv.Mater. 2019, 31(21), 1808338.
[69] Cyril Karima,N.; Jin, S.; Mook Choi, S.; Jenerali Nyamtara, K.; Maldonado Nogales, P.; Cuong Nguyen, M.; Hoon Kim, S.; Nam Lim, S.; Jeong, S.-K.; Kim, H.-K.; Ho Seo, M.; Ahn, W. Chem. Eng. J. 2024, 497, 154634.
[70] Li Z.; Wang J.; Yuan H.; Yu Y.; Tan Y. Adv. Funct. Mater. 2024, 34(45), 2405890.
[71] Zhou L.; Pan H.; Yin G.; Xiang Y.; Tan P.; Li X.; Jiang Y.; Xu M.; Zhang X. Adv. Funct. Mater. 2024, 34(23), 2314246.
[72] Sun Z.; Sun B.; Xue J.; He J.; Zhao R.; Chen Z.; Sun Z.; Liu H. K.; Dou S. X. Adv. Funct. Mater. 2025, 35(5), 2414671.
[73] Zhang H.; Zhao W.; Zou M.; Wang Y.; Chen Y.; Xu L.; Wu H.; Cao A. Adv.Energy Mater. 2018, 8(19), 1800013.
[74] Deng T.; Men X.-L.; Jiao X.-C.; Wang J. Ceram.Int. 2022, 48(3), 4352-4360.
[75] Qi J.; Zhang M.; Xu T.; Liu K.; Wang Y.; Zhang H.; Wang X.; Yuan Z.; Si C. Chem. Eng. J. 2024, 500, 157318.
[76] Jin H.-G.; Wang M.; Wen J.-X.; Han S.-H.; Hong X.-J.; Cai Y.-P.; Li G.; Fan J.; Chao, Z.-S. ACS Appl. Mater. Interfaces 2021, 13(3), 3899-3910.
[77] Feng Y.; Wang G.; Kang W.; Deng N.; Cheng B. Electrochim. Acta 2021, 365, 137344.
[78] Li X.; Yan Z.; Zhang J.; Huang Z.; Li F.; Yang L.; Huang J.; Wang G.; Xu G. Chemical Engineering Journal 2024, 493, 152554.
[79] Hong X.-J.; Song C.-L.; Yang Y.; Tan H.-C.; Li G.-H.; Cai Y.-P.; Wang H. ACS Nano 2019, 13, 1923-1931.
[80] Bai S.; Liu X.; Zhu K.; Wu S.; Zhou H. Nat. Energy 2016, 1(7), 16094.
[81] Liu B.; Taheri M.; Torres J. F.; Fusco Z.; Lu T.; Liu Y.; Tsuzuki T.; Yu G.; Tricoli A. ACS Nano 2020, 14(10), 13852-13864.
[82] Wu X.; Luo L.; Peng S.; Zhang M.; Li X.; Meng X.; Yin C.; Wu X.; Wu X. Chem. Eng. J. 2024, 482, 148836.
[83] Xu X.; Li S.; Cao Z.; Yang S.; Li B. Adv.Energy Mater. 2024, 14(14), 2303971.
[84] Zhong J.; Xu Q.; Li R.; Yuan D. Applied Catalysis B: Environment and Energy 2025, 361, 124615.
[85] Zhang J. J. Energy Storage 2024, 76, 109873.
[86] Shi Y.; Yang B.; Song G.; Chen Z.; Shakouri M.; Zhou W.; Zhang X.; Yuan G.; Pang H. Angew. Chem. Int. Ed. 2024, 63(45), e202411579.
[87] Jia D.; Shen Z.; Lv Y.; Chen Z.; Li H.; Yu Y.; Qiu J.; He X. Adv. Funct. Mater. 2024, 34(2), 2308319.
[88] Gopalakrishnan M.;Kao-ian, W.; Aupama, V.; Etesami, M.; Ganesan, S.; Theerthagiri, J.; Choi, M. Y.; Mohamad, A. A.; Kheawhom, S. Chem. Eng. J. 2024, 484, 149624.
[89] Lu H.; Hu J.; Zhang K.; Zhao J.; Deng S.; Li Y.; Xu B.; Pang H. Adv.Mater. 2024, 36(6), 2309753.
[90] Kim E.; Choi I.; Nam K. W.Electrochim. Acta 2022, 425, 140648.
[91] Yuan G.; Su Y.; Zhang X.; Gao B.; Hu J.; Sun Y.; Li W.; Zhang Z.; Shakouri M.; Pang H. Nati. Sci. Rev.2024, 11 (10), nwae336.
[92] Gong L.; Zhang Y.; Li Z. Mater.Today Chem. 2022, 23, 100731.
[93] Lü T.; Ma W.; Zhan D.; Zou Y.; Li J.; Feng M.; Huang X. Acta Chim. Sinica 2022, 80(5), 640.
[94] Ahmadijokani F.; Tajahmadi S.; Bahi A.; Molavi H.; Rezakazemi M.; Ko F.; Aminabhavi T. M.; Arjmand M. Chemosphere 2021, 264, 128466.
[95] Ji C.; Ren Y.; Yu H.; Hua M.; Lv L.; Zhang W. Chem. Eng. J. 2022, 430, 132960.
[96] Li W.; Liu Y.-Y.; Bai Y.; Wang J.; Pang H. J.Hazardous Mater. 2020, 395, 122692.
[97] Zhang G.; Fan H.; Zhou R.; Yin W.; Wang R.; Yang M.; Xue Z.; Yang Y.; Yu J. J.Hazardous Mater. 2022, 424, 127273.
[98] Bai Z.; Liu Q.; Zhang H.; Yu J.; Chen R.; Liu J.; Song D.; Li R.; Wang J. ACS Appl. Mater. Interfaces 2020, 12(15), 18012-18022.
[99] Huang Z.; Xiong C.; Ying L.; Wang W.; Wang S.; Ding J.; Lu J. Journal of Hazardous Materials 2022, 432, 128700.
[100] Yang W.; Liang H.; Qiao Z. Acta Chim. Sinica 2018, 76(10), 785.
[101] Ning H.; Yang Z.; Yin Z.; Wang D.; Meng Z.; Wang C.; Zhang Y.; Chen Z. ACS Appl. Mater. Interfaces 2021, 13(15), 17781-17790.
[102] Muschi M.;Devautour-Vinot, S.; Aureau, D.; Heymans, N.; Sene, S.; Emmerich, R.; Ploumistos, A.; Geneste, A.; Steunou, N.; Patriarche, G.; De Weireld, G.; Serre, C. J. Mater. Chem. A 2021, 9(22), 13135-13142.
[103] Lin J.-B.; Nguyen T. T.T.; Vaidhyanathan, R.; Burner, J.; Taylor, J. M.; Durekova, H.; Akhtar, F.; Mah, R. K.; Ghaffari-Nik, O.; Marx, S.; Fylstra, N.; Iremonger, S. S.; Dawson, K. W.; Sarkar, P.; Hovington, P.; Rajendran, A.; Woo, T. K.; Shimizu, G. K. H. Science 2021, 374(6574), 1464-1469.
[104] Liang J.; Nuhnen A.; Millan S.; Breitzke H.; Gvilava V.; Buntkowsky G.; Janiak C. Angew. Chem. Int. Ed. 2020, 59(15), 6068-6073.
文章导航

/