综述

基于发光太阳能聚光器的透明光伏技术:效率瓶颈、材料设计与前景展望

  • 黄静 ,
  • 赵乐妍 ,
  • 徐勃
展开
  • a南京理工大学 环境与生物工程学院 南京 210094
    b南京理工大学 中法工程师学院 南京 210094
    c南京理工大学 化学与化工学院 南京 210094
黄静,博士,南京理工大学环境与生物工程学院副教授,硕士生导师。主要从事基于量子点的光伏器件和发光器件的研究,尤其在发光太阳能聚光器-光伏组件方面的研究。
赵乐妍,2025年南京理工大学在读硕士研究生,主要从事铜铟硫量子点基发光太阳能聚光器的制备与应用研究。
徐勃,博士,南京理工大学化学与化工学院教授,博士生导师。主要研究方向为能源光电材料与器件,聚焦于光伏电池与发光显示等领域。

收稿日期: 2025-08-28

  网络出版日期: 2025-10-17

基金资助

国家自然科学基金(62304108);中央高校基本科研业务费专项资金(30923011030,30925020113)资助

Transparent Photovoltaics Based on Luminescent Solar Concentrators: Efficiency Bottlenecks, Material Design, and Future Prospects

  • Huang Jing ,
  • Zhao Leyan ,
  • Xu Bo
Expand
  • aSchool of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China
    bSino-French Engineer School, Nanjing University of Science and Technology, Nanjing 210094, China
    cSchool of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China

Received date: 2025-08-28

  Online published: 2025-10-17

Supported by

National Natural Science Foundation of China(62304108); Fundamental Research Funds for the Central Universitie(30923011030,30925020113)

摘要

透明光伏凭借其高透光特性可隐形集成于建筑及各种生活场景中,能为高密度城市节能减排提供创新解决方案。然而该技术在大规模应用前,仍需解决一些关键技术问题,包括在维持高视觉舒适度的基础上提升大面积器件的能量转换效率,同步优化器件稳定性与成本控制。为了应对这些技术挑战,本文重点探讨了发光太阳能聚光器-光伏(LSC-PV)组件这一种新型透明光伏的技术特点,包括高太阳光利用率,简便的制作工艺,以及灵活的产品设计。面对大面积LSC-PV效率限制的技术瓶颈,本文通过对LSC的光学效率影响因素的分析,介绍了通过合成或者合成后修饰提高LSC内发光材料的荧光量子产率的方法,同时讨论通过抑制发光材料在聚合物基质中的吸收-荧光光谱重叠系数提高LSC器件的波导效率的策略,以获得高效率的LSC-PV组件。最后,通过介绍LSC与其他功能器件的联用技术,表明透明光伏技术以及基于LSC-PV类型的透明光伏技术可通过持续的技术迭代与系统优化,成为实现"双碳"战略目标的重要技术路径。

本文引用格式

黄静 , 赵乐妍 , 徐勃 . 基于发光太阳能聚光器的透明光伏技术:效率瓶颈、材料设计与前景展望[J]. 化学学报, 0 : 0 . DOI: 10.6023/A25080292

Abstract

Transparent photovoltaic (TPV), with its high light transmittance, can be seamlessly integrated into buildings and various daily-life scenarios, offering an innovative solution for energy conservation and emission reduction in high-density cities. However, before large-scale application, several key technical challenges must be addressed, including enhancing the power conversion efficiency of large-area devices while maintaining high visual comfort, and simultaneously optimizing device stability and cost control. To tackle these challenges, this review focuses on the technical characteristics of a novel TPV technology: the luminescent solar concentrator-photovoltaic (LSC-PV) devices. These characteristics include high solar energy utilization, a straightforward fabrication process, and flexible product design. Confronting the technical bottleneck of efficiency limitations in large-area LSC-PVs, this paper analyzes the factors influencing the optical efficiency of LSCs. It highlights strategies for improving the photoluminescence quantum yield of luminescent materials within LSCs through synthesis or post-synthetic modification, and for enhancing the waveguide efficiency of LSC devices by suppressing the absorption-emission spectral overlap integral of luminescent materials within the polymer matrix, ultimately aiming to achieve high-efficiency LSC-PV devices. Finally, by introducing the integration technology of LSCs with other functional devices, it demonstrates that TPV technology, particularly LSC-PV-based TPV, through continuous technological iteration and system optimization, will become a crucial technical pathway for achieving the "carbon peak and carbon neutrality" strategic goals.

参考文献

[1] United Nations. The Paris Agreement. (2015-12-12)[2024-07-05]. https://unfccc.int/process-and-meetings/the-paris-agreement.
[2] International Energy Agency (IEA). World Energy Outlook 2023: CC BY 4.0, Paris: International Energy Agency, 2023: 1-355.
[3] 新华网宁夏频道. 沙漠变“蓝海”绿洲. (2024-05-31)[2024-07-11]. . 沙漠变“蓝海”绿洲. (2024-05-31)[2024-07-11]. http://www.nx.xinhuanet.com/.
[4] 国家能源局. 常州天合光能建成中国农村“连片屋顶光伏发电村”. (2014-01-10)[2024-07-05]. https://www.nea.gov.cn/2014-01/10/c_133034389.htm.
[5] Xue Q.; Xia R.; Brabec C. J.; Yip H.-L.Energy Environ. Sci. 2018, 11, 1688.
[6] Needell D. R.; Phelan M. E.; Hartlove J. T.; Atwater H. A.Energy 2021, 219.
[7] Mesloub A.; Albaqawy G. A.; Kandar M. Z.Sustainability 2020, 12.
[8] Onyx Solar. Headquarters of Novartis-Photovoltaic Skylight. (2014-01-12)[2024-07-11]. https://onyxsolar.com/novartis-headquarters.
[9] 龙焱能源科技. 看光伏与建筑的“跨界”联动:中国西部科技创新港7号楼. (2023-06-19)[2024-07-18]. . 看光伏与建筑的“跨界”联动:中国西部科技创新港7号楼. (2023-06-19)[2024-07-18]. http://www.advsolarpower.com/case/case-info/7/291.
[10] Lee K.; Kim N.; Kim K.; Um H.-D.; Jin W.; Choi D.; Park J.; Park K. J.; Lee S.; Seo K.Joule 2020, 4, 235.
[11] Liu Y.; Cheng P.; Li T.; Wang R.; Li Y.; Chang S. Y.; Zhu Y.; Cheng H. W.; Wei K. H.; Zhan X.; Sun B.; Yang Y.ACS Nano 2019, 13, 1071.
[12] Kanellis M.; de Jong, M. M.; Slooff, L.; Debije, M. G.Renewable Energy 2017, 103, 647.
[13] Traverse C. J.; Pandey R.; Barr M. C.; Lunt R. R.Nat. Energy 2017, 2, 849.
[14] Yang J.; Jo H.; Choi S.-W.; Kang D.-W.; Kwon J.-D.J. Mater. Sci. Technol. 2019, 35, 1563.
[15] Shin M. J.; Jo J. H.; Cho A.; Gwak J.; Yun J. H.; Kim K.; Ahn S. K.; Park J. H.; Yoo J.; Jeong I.; Choi B.-H.; Cho J.-S.Sol. Energy 2019, 181, 276.
[16] Shin M. J.; Lee A.; Cho A.; Kim K.; Ahn S. K.; Park J. H.; Yoo J.; Yun J. H.; Gwak J.; Shin D.; Jeong I.; Cho J.-S.Nano Energy 2021, 82.
[17] Mutalikdesai A.; Ramasesha S. K.Thin Solid Films 2017, 632, 73.
[18] Guan S.; Li Y.; Yan K.; Fu W.; Zuo L.; Chen H.Adv. Mater. 2022, 34.
[19] Garai R.; Sharma B.; Afroz M. A.; Choudhary S.; Sharma T.; Metcalf I.; Tailor N. K.; Iyer P. K.; Mohite A. D.; Satapathi S.ACS Energy Lett. 2024, 9, 2936.
[20] Godfroy M.; Liotier J.; Mwalukuku V. M.; Joly D.; Huaulmé Q.; Cabau L.; Aumaitre C.; Kervella Y.; Narbey S.; Oswald F.; Palomares E.; González Flores, C. A.; Oskam, G.; Demadrille, R.Sustainable Energy Fuels 2021, 5, 144.
[21] Wu Y.; Huang J.; Zang J.; Zhou J.; Cheng C.; Hu Z.; Shan D.; Yang W.; Sychugov I.; Sun L.; Xu B.Energy Environ. Sci. 2024, 17, 6338.
[22] Corrao R.Sustainability 2018, 10.
[23] Lunt R. R.Appl. Phys. Lett. 2012, 101.
[24] Treml B. E.; Hanrath T.ACS Energy Lett. 2016, 1, 391.
[25] Xiong Z.; Walsh T. M.; Aberle A. G.Energy Procedia 2011, 8, 384.
[26] Lim J. W.; Kim G.; Shin M.; Yun S. J.Sol. Energy Mater. Sol. Cells 2017, 163, 164.
[27] Chang S.-Y.; Cheng P.; Li G.; Yang Y.Joule 2018, 2, 1039.
[28] Bag S.; Durstock M. F.Nano Energy 2016, 30, 542.
[29] Passoni L.; Fumagalli F.; Perego A.; Bellani S.; Mazzolini P.; Di Fonzo, F.Nanotechnol. 2017, 28.
[30] Meinardi F.; Bruni F.; Brovelli S.Nat. Rev. Mater. 2017, 2.
[31] Richards B. S.; Howard I. A.Energy Environ. Sci. 2023, 16, 3214.
[32] Yang C.; Sheng W.; Moemeni M.; Bates M.; Herrera C. K.; Borhan B.; Lunt R. R.Adv. Energy Mater. 2021, 11.
[33] Gutierrez G. D.; Coropceanu I.; Bawendi M. G.; Swager T. M.Adv. Mater. 2015, 28, 497.
[34] Zhao H.; Liu G.; You S.; Camargo F. V.A.; Zavelani-Rossi, M.; Wang, X.; Sun, C.; Liu, B.; Zhang, Y.; Han, G.; Vomiero, A.; Gong, X.Energy Environ. Sci. 2021, 14, 396.
[35] Li J.; Zhao H.; Zhao X.; Gong X.Nanoscale Horiz. 2023, 8, 83.
[36] Wu K.; Li H.; Klimov V. I.Nat. Photonics 2018, 12, 105.
[37] Meinardi F.;McDaniel, H.; Carulli, F.; Colombo, A.; Velizhanin, K. A.; Makarov, N. S.; Simonutti, R.; Klimov, V. I.; Brovelli, S.Nat. Nanotechnol. 2015, 10, 878.
[38] Lee H. J.; Im S.; Jung D.; Kim K.; Chae J. A.; Lim J.; Park J. W.; Shin D.; Char K.; Jeong B. G.; Park J. S.; Hwang E.; Lee D. C.; Park Y. S.; Song H. J.; Chang J. H.; Bae W. K.Nat. Commun. 2023, 14, 3779.
[39] Li H.-B.; Yin K. Chinese Optics2017, 10, 555-567 (in Chinese).
(李红博, 尹坤, 中国光学2017, 10, 555-567.).
[40] Debije M. G.; Verbunt P. P.C.Adv. Energy Mater. 2011, 2, 12.
[41] Li X.; Qi J.; Zhu J.; Jia Y.; Liu Y.; Li Y.; Liu H.; Li G.; Wu K.J. Phys. Chem. Lett. 2022, 13, 9177.
[42] Cambié D.; Zhao F.; Hessel V.; Debije M. G.; Noël T.Angew. Chem. Int. Ed. 2016, 56, 1050.
[43] Huang J.; Zhou J.; Jungstedt E.; Samanta A.; Linnros J.; Berglund L. A.; Sychugov I.ACS Photonics 2022, 9, 2499.
[44] Makarov N. S.; Korus D.; Freppon D.; Ramasamy K.; Houck D. W.; Velarde A.; Parameswar A.; Bergren M. R.; McDaniel, H.ACS Appl. Mater. Interfaces 2022, 14, 29679.
[45] Roncali J.Adv. Energy Mater. 2020, 10.
[46] Vossen F. M.; Aarts M. P.J.; Debije, M. G.Energy Build. 2016, 113, 123.
[47] Sychugov I.Optica 2019, 6, 1046.
[48] Yang C.; Liu D.; Bates M.; Barr M. C.; Lunt R. R.Joule 2019, 3, 1803.
[49] Bai J.-J.; Xu F.-L.; Li P.-J.; Li X.; Xu W.-J.; Qu, Y. Chinese Journal Of Luminescence2024, 45, 1724-1731 (in Chinese).
(白静静, 许凤利, 李鹏炬, 李歆, 徐文军, 翟燕, 发光学报, 2024, 45, 1724-1731.).
[50] Huang J.; Zhou J.; Haraldsson T.; Clemments A.; Fujii M.; Sugimoto H.; Xu B.; Sychugov I.Sol. RRL 2020, 4.
[51] Slooff L. H.; Bende E. E.; Burgers A. R.; Budel T.; Pravettoni M.; Kenny R. P.; Dunlop E. D.; Büchtemann A.Phys. Stat. Sol.(RRL) 2008, 2, 257.
[52] Desmet L.; Ras A.; de Boer, D.; Debije, M.Opt. Lett. 2012, 37, 3087.
[53] Anand A.; Zaffalon M. L.; Gariano G.; Camellini A.; Gandini M.; Brescia R.; Capitani C.; Bruni F.; Pinchetti V.; Zavelani‐Rossi, M.; Meinardi, F.; Crooker, S. A.; Brovelli, S.Adv. Funct. Mater. 2019, 30.
[54] Luo X.; Ding T.; Liu X.; Liu Y.; Wu K.Nano Lett 2019, 19, 338.
[55] Li Z.; Johnston A.; Wei M.; Saidaminov M. I.; Martins de Pina, J.; Zheng, X.; Liu, J.; Liu, Y.; Bakr, O. M.; Sargent, E. H.Joule 2020, 4, 631.
[56] Jash M.; Lu X.; Zhou J.; Toprak M. S.; Sychugov I.Adv. Opt. Mater. 2025.
[57] Xie Y.-P.; Zhu Z.; Wang J.-J.; Song K.-H.; Yin Y.-C.; Song Y.-H.; Ma Z.-Y.; Cai F.; Shi G.; Yan Z.; Feng L.-Z.; Xu J.; Xiao Z.; Yao H.-B.ACS Mater. Lett. 2024, 7, 141.
[58] Chen J.; Zhao H.; Li Z.; Zhao X.; Gong X.Energy Environ. Sci. 2022, 15, 799.
[59] Mattiello S.; Sanzone A.; Bruni F.; Gandini M.; Pinchetti V.; Monguzzi A.; Facchinetti I.; Ruffo R.; Meinardi F.; Mattioli G.; Sassi M.; Brovelli S.; Beverina L.Joule 2020, 4, 1988.
[60] Neo D. C.J.; Goh, W. P.; Lau, H. H.; Shanmugam, J.; Chen, Y. F.ACS Appl. Nano Mater. 2020, 3, 6489.
[61] Bergren M. R.; Makarov N. S.; Ramasamy K.; Jackson A.; Guglielmetti R.; McDaniel, H.ACS Energy Lett. 2018, 3, 520.
[62] Marinins A.; Yang Z.; Chen H.; Linnros J.; Veinot J. G.C.; Popov, S.; Sychugov, I.ACS Photonics 2016, 3, 1575.
[63] Zhang P.; Chai X.-Y.; Li S.-J.; Ren L.-J.; Zheng Y.-B.; Qin Z.-R.; Zhang J.-T.; Jiang L.-Y.Chinese Journal Of Luminescence 2023, 44, 1990-2001 (in Chinese).
(张培, 柴鑫毅, 李少君, 任林娇, 郑一博, 秦自瑞, 张吉涛, 张庆芳, 姜利英, 发光学报, 2023, 44, 1990-2001.).
[64] Hill S. K.E.; Connell, R.; Peterson, C.; Hollinger, J.; Hillmyer, M. A.; Kortshagen, U.; Ferry, V. E.ACS Photonics 2018, 6, 170.
[65] Zhang B.; Zhao P.; Wilson L. J.; Subbiah J.; Yang H.; Mulvaney P.; Jones D. J.; Ghiggino K. P.; Wong W. W.H.ACS Energy Lett. 2019, 4, 1839.
[66] Meinardi F.; Colombo A.; Velizhanin K. A.; Simonutti R.; Lorenzon M.; Beverina L.; Viswanatha R.; Klimov V. I.; Brovelli S.Nat. Photonics 2014, 8, 392.
[67] Wang A.; Liu J.; Li J.; Cheng S.; Zhang Y.; Wang Y.; Xie Y.; Yu C.; Chu Y.; Dong J.; Cao J.; Wang F.; Huang W.; Qin T.J. Am. Chem. Soc. 2023, 145, 28156.
[68] Meinardi F.; Bruni F.; Castellan C.; Meucci M.; Umair A. M.; La Rosa, M.; Catani, J.; Brovelli, S.Adv. Energy Mater. 2024, 14.
[69] Huang S.; Guo H.; Xia P.; Sun H.; Lu C.; Feng Y.; Zhu J.; Liang C.; Xu S.; Wang C.Nat. Commun. 2025, 16.
[70] Sol J. A.H. P.; Timmermans, G. H.; van Breugel, A. J.; Schenning, A. P. H. J.; Debije, M. G.Adv. Energy Mater. 2018, 8.
[71] Renny A.; Yang C.; Anthony R.; Lunt R. R.J. Chem. Educ. 2018, 95, 1161.
[72] Khan Q.; Wang A.; Li P.; Hu J.Adv. Sustainable Syst. 2025, 9, 2401015.
[73] Reinders A.; Kishore R.; Slooff L.; Eggink W.Jpn. J. Appl. Phys. 2018, 57.
文章导航

/