Acta Chimica Sinica ›› 2019, Vol. 77 ›› Issue (9): 832-840.DOI: 10.6023/A19050177 Previous Articles Next Articles
Special Issue: 有机自由基化学
Review
投稿日期:
2019-05-14
发布日期:
2019-07-16
通讯作者:
俞寿云
E-mail:yushouyun@nju.edu.cn
作者简介:
张洪浩, 1991年出生于江苏扬州, 2009年和2013年于江苏师范大学先后获得学士和硕士学位, 2013年至今在俞寿云教授指导下攻读博士学位. 其研究兴趣主要是可见光促进的不对称催化反应.|俞寿云, 1978年11月出生于江苏南京. 2001年获南京大学理学学士学位. 2006年获中国科学院上海有机化学研究所理学博士学位(导师为马大为研究员). 2006年到2007年留所任助理研究员. 2007年-2010年在美国宾夕法尼亚大学进行博士后研究(合作导师Jeffrey W. Bode教授). 2010年9月被聘为南京大学化学化工学院副教授, 博士生导师. 2016年起任南京大学化学化工学院教授. 曾获2012年Thieme Chemistry Journals Award, 2007年国家自然科学二等奖(排名第四)和2005年上海市科技进步一等奖(排名第四)等奖项.
基金资助:
Zhang, Hong-Hao, Yu, Shouyun*()
Received:
2019-05-14
Published:
2019-07-16
Contact:
Yu, Shouyun
E-mail:yushouyun@nju.edu.cn
Supported by:
Share
Zhang, Hong-Hao, Yu, Shouyun. Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions[J]. Acta Chimica Sinica, 2019, 77(9): 832-840.
[1] |
(a) Tsuji, J.; Takahashi, H.; Morikawa, M . Tetrahedron Lett. 1965, 6, 4387.
doi: 10.1016/S0040-4039(00)71674-1 |
(b) Tsuji, J . Acc. Chem. Res. 1969, 2, 144.
doi: 10.1016/S0040-4039(00)71674-1 |
|
[2] |
Trost, B. M.; Strege, P. E. J. Am. Chem. Soc. 1977, 99, 1649.
doi: 10.1021/ja00447a064 |
[3] |
(a) Trost, B. M.; Van Vranken, D. L. Chem. Rev. 1996, 96, 395.
doi: 10.1021/cr9409804 |
(b) Trost B. M.; Crawley, M. L. Chem. Rev. 2003, 103, 2921.
doi: 10.1021/cr9409804 |
|
(c) Trost, B. M.; Machacek, M. R.; Aponick, A. Acc. Chem. Res. 2006, 39, 747.
doi: 10.1021/cr9409804 |
|
(d) Trost, B. M. Org. Process Res. Dev. 2012, 16, 185. 185.
doi: 10.1021/cr9409804 |
|
[4] |
(a) Wang, Y-N.; Lu, L.-Q.; Xiao, W.-J. Chem. Asian J. 2018, 13, 2174.
doi: 10.6023/A16020078 |
(b) Tang, H.; Huo, X.; Meng, Q.; Zhang, W. Acta Chim. Sinica 2016, 74, 219 (in Chinese).
doi: 10.6023/A16020078 |
|
(汤淏溟, 霍小红, 孟庆华, 张万斌, 化学学报, 2016, 74, 219.)
doi: 10.6023/A16020078 |
|
[5] |
(a) Hartwig, J. F.; Stanley, L. M. Acc. Chem. Res. 2010, 43, 1461.
doi: 10.1021/ar100047x |
(b) Cheng, Q.; Tu, H. F.; Zheng, C.; Qu, J.-P.; Helmchen, G.; You, S.-L. . Chem Rev. 2019, 119, 1855.
doi: 10.1021/ar100047x |
|
(c) Deng, Y.; Yang, W.; Yang, X.; Yang, D.Chin. J. Org. Chem. 2017, 37, 3039 (in Chinese).
doi: 10.1021/ar100047x |
|
(邓颖颍, 杨文, 杨新, 杨定乔, 有机化学, 2017, 37, 3039.)
doi: 10.1021/ar100047x |
|
[6] |
(a) Alexakis, A.; Bäckvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M. . Chem Rev. 2008, 108, 2796.
doi: 10.1021/cr0683515 |
(b) Yorimitsu, H.; Oshima, K. Angew. Chem., Int. Ed. 2005, 44, 4435.
doi: 10.1021/cr0683515 |
|
[7] |
Zhang, H.; Gu, Q.; You, S.-L . Chin. J. Org. Chem. 2019, 39, 15 (in Chinese).
doi: 10.6023/cjoc201809037 |
( 张慧君, 顾庆, 游书力 , 有机化学, 2019, 39, 15.)
doi: 10.6023/cjoc201809037 |
|
[8] |
(a) Turnbull, B. W. H.; Evans, P. A. J. Org. Chem. 2018, 83, 11463.
doi: 10.1021/acs.joc.8b00583 |
(b) Thoke, M. B.; Kang, Q. Synthesis 2019, DOI: 10. 1055/s-0037-1611784.
doi: 10.1021/acs.joc.8b00583 |
|
[9] |
Bruneau, C.; Renaud, J.-L.; Demerseman, B. Chem. Eur. J. 2006, 12, 5178.
doi: 10.1002/(ISSN)1521-3765 |
[10] |
(a) Trost, B. M.; Verhoeven, T. R. J. Org. Chem. 1976, 41, 3215.
doi: 10.1021/jo00881a039 |
(b) Matsushita, H.; Negishi, E. J. Chem. Soc. Chem. Commun. 1982, 160.
doi: 10.1021/jo00881a039 |
|
(c) Lu, Z.; Ma, S. Angew. Chem., Int. Ed. 2008, 47, 258.
doi: 10.1021/jo00881a039 |
|
(d) Weaver, J. D.; Recio, III, A.; Grenning, A. J.; Tunge, J. A. Chem. Rev. 2011, 111, 1846.
doi: 10.1021/jo00881a039 |
|
(e) Yu, Y.-N.; X, M.-H. Acta Chim. Sinica 2017, 75, 655 (in Chinese). (于月娜, 徐明华, 化学学报, 2017, 75, 655.)
doi: 10.1021/jo00881a039 |
|
(f) Transition Metal Catalyzed Enantioselective Allylic Substitution in Organic Synjournal, Ed.: Kazmaier, U., Springer, Heidelberg, 2012.
doi: 10.1021/jo00881a039 |
|
[11] |
For reviews on this topic, see: (a) Harutyunyan, S. R.; den Hartog, T.; Geurts, K.; Minnaard, A. J.; Feringa, B. L. Chem. Rev. 2008, 108, 2824.
doi: 10.1021/cr068424k |
(b) Alexakis, A.; Backvall, J. E.; Krause, N.; Pàmies, O.; Diéguez, M . Chem. Rev. 2008, 108, 2796.
doi: 10.1021/cr068424k |
|
(c) Teichert, J. F.; Ferin-ga, B. L. Angew. Chem., Int. Ed. 2010, 49, 2486.
doi: 10.1021/cr068424k |
|
(d) Cherney, A. H.; Kadunce, N. T.; Reisman, S. E. Chem. Rev. 2015, 115, 9587.
doi: 10.1021/cr068424k |
|
(e) Hartwig, J. F.; Pouy, M. J. Top. Organomet. Chem. 2011, 34, 169.
doi: 10.1021/cr068424k |
|
(f) Schäfer, P.; Sidera, M.; Palacin, T.; Fletcher, S. P. Chem. Commun. 2017, 53, 12499.
doi: 10.1021/cr068424k |
|
[12] |
(a) Zheng, W.-H.; Zheng, B.-H.; Zhang, Y.; Hou, X.-L. J. Am. Chem. Soc. 2007, 129, 7718.
doi: 10.1021/ja071098l |
(b) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2008, 130, 14092.
doi: 10.1021/ja071098l |
|
(c) Trost, B. M.; Thaisrivongs, D. A. J. Am. Chem. Soc. 2009, 131, 12056.
doi: 10.1021/ja071098l |
|
(d) Zhang, P.; Brozek, L. A.; Morken, J. P. J. Am. Chem. Soc. 2010, 132, 10686.
doi: 10.1021/ja071098l |
|
(e) Chen, J.-P.; Ding, C.-H.; Liu, W.; Hou, X.-L.; Dai, L.-X. J. Am. Chem. Soc. 2010, 132, 15493.
doi: 10.1021/ja071098l |
|
(f) Zhang, P.; Le, H.; Kyne, R. E.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 9716.
doi: 10.1021/ja071098l |
|
(g) Trost, B. M.; Thaisrivongs, D. A.; Hartwig, J. J. Am. Chem. Soc. 2011, 133, 12439.
doi: 10.1021/ja071098l |
|
(h) Chen, J.-P.; Peng, Q.; Lei, B.-L.; Hou, X.-L.; Wu, Y.-D. J. Am. Chem. Soc. 2011, 133, 14180.
doi: 10.1021/ja071098l |
|
(i) Brozek, L. A.; Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2011, 133, 16778.
doi: 10.1021/ja071098l |
|
(j) Ardolino, M. J.; Morken, J. P. J. Am. Chem. Soc. 2014, 136, 7092.
doi: 10.1021/ja071098l |
|
(k) Niyomchon, S.; Audisio, D.; Luparia, M.; Maulide, N. Org. Lett. 2013, 15, 2318.
doi: 10.1021/ja071098l |
|
(l) Misale, A.; Niyomchon, S.; Luparia, M.; Maulide, N. Angew. Chem., Int. Ed. 2014, 53, 7068.
doi: 10.1021/ja071098l |
|
(m) Mao, J.; Zhang, J.; Jiang, H.; Bellomo, A.; Zhang, M.; Gao, Z.; Dreher, S. D.; Walsh, P. J. Angew. Chem., Int. Ed. 2016, 55, 2526.
doi: 10.1021/ja071098l |
|
(n) Murakami, R.; Sano, K.; Iwai, T.; Taniguchi, T.; Monde, K.; Sawamura, M. Angew. Chem., Int. Ed. 2018, 57, 9465.
doi: 10.1021/ja071098l |
|
[13] |
(a) Butt, N.; Yang, G.; Zhang, W. Chem . Rec. 2016, 16, 2687.
doi: 10.6023/A18060237 |
(b) Afewerki, S.; Córdova, A. Chem . Rev. 2016, 116, 13512.
doi: 10.6023/A18060237 |
|
(c) Zhang, M.-M.; Luo, Y.-Y.; Lu, L.-Q.; Xiao, W.-J. Acta Chim. Sinica 2018, 76, 838 (in Chinese).
doi: 10.6023/A18060237 |
|
(张毛毛, 骆元元, 陆良秋, 肖文精, 化学学报, 2018, 76, 838.)
doi: 10.6023/A18060237 |
|
(d) Butt, N. A.; Zhang, W. Chem. Soc. Rev. 2015, 44, 7929.
doi: 10.6023/A18060237 |
|
(e) Fu, J.; Huo, X.; Li, B.; Zhang, W. Org. Biomol. Chem. 2017, 15, 9747.
doi: 10.6023/A18060237 |
|
[14] |
For reviews on photoredox catalysis, see: (a) Narayanam, J. M. R.; Ste-phenson, C. R. J. Chem. Soc. Rev. 2011, 40, 102.
doi: 10.1039/B913880N |
(b) Xuan, J.; Xiao, W.-J. Angew. Chem., Int. Ed. 2012, 51, 6828.
doi: 10.1039/B913880N |
|
(c) Prier, C. K.; Rankic, D. A.; MacMillan, D. W. C. Chem. Rev. 2013, 113, 5322.
doi: 10.1039/B913880N |
|
(d) Dai, X.-J.; Xu, X.-L.; Li, X.-N. Chin. J. Org. Chem. 2013, 33, 2046 (in Chinese).
doi: 10.1039/B913880N |
|
(戴小军, 许孝良, 李小年, 有机化学, 2013, 33, 2046.)
doi: 10.1039/B913880N |
|
(e) Schultz, D. M.; Yoon, T. P. Science 2014, 343, 1239176.
doi: 10.1039/B913880N |
|
(f) Brim-ioulle, R.; Lenhart, D.; Maturi, M. M.; Bach, T. Angew. Chem., Int. Ed. 2015, 54, 3872.
doi: 10.1039/B913880N |
|
(g) Tan, F.; Xiao, W. Acta Chim. Sinica 2015, 73, 85 (in Chinese).
doi: 10.1039/B913880N |
|
(谭芬, 肖文精, 化学学报, 2015, 73, 85.)
doi: 10.1039/B913880N |
|
(h) Romero, N. A.; Nicewicz, D. A. Chem. Rev. 2016, 116, 10075.
doi: 10.1039/B913880N |
|
(i) Ravelli, D.; Protti, S.; Fagnoni, M. Chem. Rev. 2016, 116, 9850.
doi: 10.1039/B913880N |
|
[15] |
For selected examples on palladium metallaphotoredox catalysis, see: (a) Kalyani, D.; McMurtrey, K. B.; Neufeldt, S. R.; Sanford, M. S. J. Am. Chem. Soc. 2011, 133, 18566.
doi: 10.1021/ja208068w |
(b) Neufeldt, S. R.; Sanford, M. S. Adv. Synth. Catal. 2012, 354, 3517.
doi: 10.1021/ja208068w |
|
(c) Zoller, J.; Fabry, D. C.; Ronge, M. A.; Rueping, M. . Angew. Chem., Int. Ed. 2014, 53, 13264.
doi: 10.1021/ja208068w |
|
(d) Mori, K.; Kawashima, M.; Yamashita, H . Chem. Commun. 2014, 50, 14501.
doi: 10.1021/ja208068w |
|
(e) Choi, S.; Chatterjee, T.; Choi, W. J.; You, Y.; Cho, E. J . ACS Catal. 2015, 5, 4796.
doi: 10.1021/ja208068w |
|
(f) Zhou, C.; Li, P.; Zhu, X.; Wang, L . Org. Lett. 2015, 17, 6198.
doi: 10.1021/ja208068w |
|
(g) Cheng, W.-M.; Shang, R.; Yu, H.-Z.; Fu, Y . Chem. Eur. J. 2015, 21, 13191.
doi: 10.1021/ja208068w |
|
(h) Liu, K.; Zou, M.; Lei, A . J. Org. Chem. 2016, 81, 7088.
doi: 10.1021/ja208068w |
|
(i) Kärkäs, M. D.; Bosque, I.; Matsuura, B. S.; Stephenson, C. R. J . Org. Lett. 2016, 18, 5166.
doi: 10.1021/ja208068w |
|
(j) Shimomaki, K.; Murata, K.; Martin, R.; Iwasawa, N . J. Am. Chem. Soc. 2017, 139, 9467.
doi: 10.1021/ja208068w |
|
(k) Kato, S.; Saga, Y.; Kojima, M.; Fuse, H.; Matsunaga, S.; Fukatsu, A.; Kondo, M.; Masaoka, S.; Kanai, M . J. Am. Chem. Soc. 2017, 139, 2204.
doi: 10.1021/ja208068w |
|
[16] |
For selected examples on nickel metallaphotoredox catalysis, see: (a) Zuo, Z.; Ahneman, D. T.; Chu, L.; Terrett, J. A.; MacMillan, D. W. C. Science 2014, 345, 437.
doi: 10.1002/anie.201504963 |
(b) Tellis, J. C.; Primer, D. N.; Molander, G. A . Science 2014, 345, 433.
doi: 10.1002/anie.201504963 |
|
(c) Corcé, V.; Chamoreau, L.-M.; Derat, E.; Goddard, J.-P.; Ollivier, C.; Fensterbank, L . Angew. Chem., Int. Ed. 2015, 54, 11414.
doi: 10.1002/anie.201504963 |
|
(d) Nakajima, K.; Nojima, S.; Nishibayashi, Y . Angew. Chem., Int. Ed. 2016, 55, 14106.
doi: 10.1002/anie.201504963 |
|
(e) Shaw, M. H.; Shurtleff, V. W.; Terrett, J. A.; Cuthbertson, J. D.; MacMillan, D. W. C . Science. 2016, 352, 1304.
doi: 10.1002/anie.201504963 |
|
(f) Heitz, D. R.; Tellis, J. C.; Molander, G. A . J. Am. Chem. Soc. 2016, 138, 12715.
doi: 10.1002/anie.201504963 |
|
[17] |
For selected examples on copper metallaphotoredox catalysis, see: (a) Ye, Y.; Sanford, M. S. J. Am. Chem. Soc. 2012, 134, 9034.
doi: 10.1021/ja301553c |
(b) Yoo, W.-J.; Tsukamoto, T.; Kobayashi, S. Angew. Chem., Int. Ed. 2015, 54, 6587.
doi: 10.1021/ja301553c |
|
[18] |
For selected examples on gold metallaphotoredox catalysis, see: (a) Sahoo, B.; Hopkinson, M. N.; Glorius, F. J. Am. Chem. Soc. 2013, 135, 5505.
doi: 10.1021/ja400311h |
(b) Shu, X.-Z.; Zhang, M.; He, Y.; Frei, H.; Toste, F. D. J. Am. Chem. Soc. 2014, 136, 5844.
doi: 10.1021/ja400311h |
|
[19] |
(a) Skubi, K. L.; Blum, T. R.; Yoon, T. P. Chem. Rev. 2016, 116, 10035.
doi: 10.1021/acs.chemrev.6b00018 |
(b) Tellis, J. C.; Kelly, C. B.; Primer, D. N.; Jouffroy, M.; Patel, N. R.; Molander, G. A . Acc. Chem. Res. 2016, 49, 1429..
doi: 10.1021/acs.chemrev.6b00018 |
|
(c) Twilton, J.; Le, C.; Zhang, P.; Shaw, M. H.; Evans, R. W.; MacMillan, D. W. C . Nature Rev. 2017, 1, 0052.
doi: 10.1021/acs.chemrev.6b00018 |
|
(d) Wang, C.-S.; Dixneuf, P. H.; Soulé, J.-F . Chem. Rev. 2018, 118, 7532.
doi: 10.1021/acs.chemrev.6b00018 |
|
(e) Zhou, W.-J.; Zhang, Y.-H.; Gui, Y.-Y.; Sun, L.; Yu, D.-G . Synthesis. 2018, 50, 3359.
doi: 10.1021/acs.chemrev.6b00018 |
|
(f) Chuentragool, P.; Kurandina, D.; Gevorgyan, V . Angew. Chem., Int. Ed. 2019, DOI: 10. 1002/anie. 201813523.
doi: 10.1021/acs.chemrev.6b00018 |
|
[20] |
Lang, S. B.; O’Nele, K. M.; Tunge, J. A. J. Am. Chem. Soc. 2014, 136, 13606.
doi: 10.1021/ja4082793 |
[21] |
Lang, S. B.; O’Nele, K. M.; Tunge, J. A. Chem. Eur. J. 2015, 21, 18589.
doi: 10.1002/chem.201503644 |
[22] | Xuan, J.; Zeng, T.-T.; Feng,, Z,-J.; Deng, Q.-H.; Chen, J.-R.; Lu, L.-Q.; Xiao, W.-J.; Alper, H. Angew. Chem., Int. Ed. 2015, 54, 1625. |
[23] |
Jennifer, K. Matsui, J. K.; Gutiérrez-Bonet, A.; Rotella, M.; Alam, R.; Gutierrez, O.; Molander, G. A. Angew. Chem., Int. Ed. 2018, 57, 15847.
doi: 10.1002/anie.201809919 |
[24] |
Thullen, S. M.; Rovis, T. J. Am. Chem. Soc. 2017, 139, 15504.
doi: 10.1021/jacs.7b09252 |
[25] |
Zheng, J.; Breit, B. Angew. Chem., Int. Ed. 2019, 58, 3392.
doi: 10.1002/anie.201813646 |
[26] |
Schwarz, J. L.; Schäfers, F.; Tlahuext-Aca, A.; Lückemeier, L.; Glorius, F. J. Am. Chem. Soc. 2018, 140, 12705.
doi: 10.1021/jacs.8b08052 |
[27] |
For selected examples on asymmetric nickel metallaphotoredox catalysis, see:(a) Zuo, Z.; Cong, H.; Li, W.; Choi, J.; Fu, G. C.; MacMillan, D. W. C. J. Am. Chem. Soc. 2015, 138, 1832.
doi: 10.1021/jacs.5b13211 |
(b) Stache, E. E.; Rovis, T.; Doyle, A. G . Angew. Chem., Int. Ed. 2017, 56, 3679. For selected examples on asymmetric copper metallaphotoredox catalysis, see:
doi: 10.1021/jacs.5b13211 |
|
(c) Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G . J. Am. Chem. Soc. 2017, 139, 15632.
doi: 10.1021/jacs.5b13211 |
|
(d) Sha, W.; Deng, L.; Ni, S.; Mei, H.; Han, J.; Pan, Y . ACS Catal. 2018, 8, 7489.
doi: 10.1021/jacs.5b13211 |
|
[28] |
Zhang, H.-H.; Zhao, J.-J.; Yu, S. J. Am. Chem. Soc. 2018, 140, 16914.
doi: 10.1021/jacs.8b10766 |
[29] | Mitsunuma, H.; Tanabe, S.; Fuse, H.; Ohkubo, K.; Kanai, M . Chem. Sci. 2019, 10, 3459. |
[1] | Qing-Ru Zhao, Ru Jiang, Shu-Li You. Ir-catalyzed Sequential Asymmetric Allylic Substitution/Olefin Isomerization for the Synthesis of Axially Chiral Compounds [J]. Acta Chimica Sinica, 2021, 79(9): 1107-1112. |
[2] | Pusu Yang, Chen-Xu Liu, Wen-Wen Zhang, Shu-Li You. Ir-Catalyzed Enantioselective Friedel-Crafts Type Allylic Substitution of Indolizines [J]. Acta Chimica Sinica, 2021, 79(6): 742-746. |
[3] | Hongshao Jia, Baokun Qiao, Zhiyong Jiang. Photoredox Catalytic Radical Coupling to Access β-Fluoro α-Amino Acid Derivatives [J]. Acta Chimica Sinica, 2021, 79(12): 1477-1480. |
[4] | Cheng, Zhongming, Chen, Pinhong, Liu, Guosheng. Enantioselective Cyanation of Remote C—H Bonds via Cooperative Photoredox and Copper Catalysis [J]. Acta Chimica Sinica, 2019, 77(9): 856-860. |
[5] | Lu, Fu-Dong, Jiang, Xuan, Lu, Liang-Qiu, Xiao, Wen-Jing. Application of Propargylic Radicals in Organic Synthesis [J]. Acta Chimica Sinica, 2019, 77(9): 803-813. |
[6] | Zhang, Zhen, Gong, Li, Zhou, Xiao-Yu, Yan, Si-Shun, Li, Jing, Yu, Da-Gang. Radical-Type Difunctionalization of Alkenes with CO2 [J]. Acta Chimica Sinica, 2019, 77(9): 783-793. |
[7] | Liu, Yu-Cheng, Zheng, Xiao, Huang, Pei-Qiang. Photoredox Catalysis for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines [J]. Acta Chimica Sinica, 2019, 77(9): 850-855. |
[8] | Yang, Qi-Liang, Wang, Xiang-Yang, Weng, Xin-Jun, Yang, Xiang, Xu, Xue-Tao, Tong, Xiaofeng, Fang, Ping, Wu, Xin-Yan, Mei, Tian-Sheng. Palladium-Catalyzed ortho-Selective C—H Chlorination of Arenes Using Anodic Oxidation [J]. Acta Chimica Sinica, 2019, 77(9): 866-873. |
[9] | Wang Qiang, Gu Qing, You Shu-Li. Recent Progress on Transition-Metal-Catalyzed Asymmetric C-H Bond Functionalization for the Synthesis of Biaryl Atropisomers [J]. Acta Chim. Sinica, 2019, 77(8): 690-704. |
[10] | Yao, Kun, Liu, Hao, Yuan, Qianjia, Liu, Yangang, Liu, Delong, Zhang, Wanbin. Pd-Catalyzed Three-Component Chemospecific Allylic Substitution Cascade for the Synthesis of N-Carbonylmethylene-2-Pyridones [J]. Acta Chimica Sinica, 2019, 77(10): 993-998. |
[11] | Yu Sifan, Fu Xiang, Liu Gengxin, Qiu Huang, Hu Wenhao. Efficient and Facile Synthesis of Chiral Sulfonamides via Asymmetric Multicomponent Reactions [J]. Acta Chim. Sinica, 2018, 76(11): 895-900. |
[12] | Zhou Qiang, Lu Ping. Recent Advances in Cooperative Catalysis of Chiral Lewis Base and Transition Metal Catalyst [J]. Acta Chim. Sinica, 2018, 76(11): 825-830. |
[13] | Khan Ijaz, Li Hongfang, Wu Xue, Zhang Yong Jian. Asymmetric Decarboxylative Cycloaddition of Vinylethylene Carbonates with Aldehydes by Cooperative Catalysis of Palladium Complex and Chiral Squaramide [J]. Acta Chim. Sinica, 2018, 76(11): 874-877. |
[14] | Lu Hong, Liu Jin-Yu, Li Hong-Yu, Xu Peng-Fei. Recent Developments in N-Heterocyclic Carbene and Transition-Metal Cooperative Catalysis [J]. Acta Chim. Sinica, 2018, 76(11): 831-837. |
[15] | Zhang Mao-Mao, Luo Yuan-Yuan, Lu Liang-Qiu, Xiao Wen-Jing. Advances on Asymmetric Allylic Substitutions under Synergetic Catalysis System with Transition Metals and Organocatalysts [J]. Acta Chim. Sinica, 2018, 76(11): 838-849. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||