Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (5): 551-564.DOI: 10.6023/A24010009 Previous Articles    

Review

添加剂在有机太阳能电池中的应用

江雪a,b, 涂开槐a,b, 段泰男b,*(), 肖泽云b   

  1. a 重庆交通大学 国科大重庆学院 重庆 400074
    b 中国科学院重庆绿色智能技术研究院 重庆 400714
  • 投稿日期:2024-01-11 发布日期:2024-03-19
  • 作者简介:

    江雪, 重庆交通大学与中国科学院重庆绿色智能技术研究院联合培养研究生, 2022年6月于西南科技大学材料与化学学院获得应用化学专业学士学位, 同年8月于中国科学院大学进行理论培训, 2023年7月到重庆绿色智能技术研究院攻读硕士学位, 师从段泰男老师, 研究方向为器件制备与添加剂对光伏电池的性能研究.

    涂开槐, 重庆交通大学与中国科学院重庆绿色智能技术研究院联合培养研究生. 2022年6月于陕西科技大学化学与化工学院获得应用化学专业学士学位, 同年8月于中国科学院大学进行理论培训, 2023年7月到重庆绿色智能技术研究院攻读硕士学位, 师从段泰男老师, 研究方向为具有中心共轭拓展结构的高性能有机光伏受体分子的设计与合成.

    段泰男, 中国科学院重庆绿色智能技术研究院副研究员, 硕士生导师, 重庆巴渝学者青年学者, 2013年在武汉大学获博士学士. 2014年至2017年先后在多个国家和地区从事博士后研究, 2017年入职中国科学院重庆绿色智能技术研究院; 从2008年至今一直从事新型有机光伏材料的设计和应用方面的研究工作, 担任Advanced Materials、ACS applied materials & interfaces、Nano Research、Solar RRL等国际权威期刊的审稿人, 并以第一作者/通讯作者在Angewandte Chemie、Chemical Engineering Journal相关国际知名学术刊物上发表学术论文20余篇.

    肖泽云, 博士, 中国科学院重庆绿色智能技术研究院研究员. 先后在浙江大学, 中国科学院上海有机化学研究所, 瑞典隆德大学, 澳大利亚墨尔本大学学习和开展研究工作, 2017年12月加入中国科学院重庆绿色智能技术研究院. 长期从事有机/高分子/超分子功能材料及光电器件的研究.

Application of Additives in Organic Solar Cells

Xue Jianga,b, Kaihuai Tua,b, Tainan Duanb(), Zeyun Xiaob   

  1. a Chongqing School, University of Chinese Academy of Sciences (UCAS Chongqing), Chongqing Jiaotong University, Chongqing 400074, China
    b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
  • Received:2024-01-11 Published:2024-03-19
  • Contact: *E-mail: tnduan@cigit.ac.cn

Organic solar cells (OSCs) represent a promising frontier in the realm of green energy, characterized by their lightweight design, flexibility, cost-effectiveness, and capacity for large-scale production. This innovative technological advancement serves as a pivotal catalyst in advancing energy cleanliness and promoting sustainable societal progress. An essential objective in the ongoing development of organic solar cells is to elevate their power conversion efficiency to levels comparable to traditional inorganic solar cells, which typically achieve around 20% efficiency. The continuous expansion and deepening of research endeavors have accelerated the scientific progress of OSC, pushing it into a phase of rapid evolution. The persistent advancements in photovoltaic materials and optimization techniques for these devices signal a promising commercial future as device efficiency steadily rises. The structural organization and stability of OSC intricately influence its performance, with the morphology of the active layer playing a pivotal role in determining device power conversion efficiency. In recent years, the integration of additives into OSC has garnered significant attention due to their ability to fine-tune the active layer, ease of application, and remarkable potential for enhancing device performance. This review provides a succinct exploration of the various types, structures, and mechanisms of additives employed in the development of OSC. By categorizing additives based on their molecular structural features, the review identifies four primary groups: non-aromatic cyclic additives, single-cyclic or polycyclic aromatic additives, additives with donor-acceptor (D-A) molecular structures, and additives with complex functions and structures. Each category of additive is meticulously examined to offer a thorough understanding of their mechanisms and the fundamental principles guiding their development. Moreover, the review delves into the future prospects and current challenges associated with the utilization of additives in the OSC domain. It offers invaluable insights to researchers by shedding light on the design and implementation of novel, high-efficiency additives in their upcoming projects. Through this exploration of the multifaceted realm of additives in organic solar cells, the review aims to pave the way for heightened efficiency and efficacy in green energy solutions, contributing to a more sustainable future powered by innovative technologies.

Key words: organic solar cell, device efficiency, additive, morphology optimization