Acta Chimica Sinica Previous Articles     Next Articles

Review

旋涂两步法甲脒铅基钙钛矿太阳能电池近期研究进展

陈宇波†a, 郑德旭†b, 王楠a, 刘吉双b, 于凤阳*,a, 吴飒建b, 刘生忠*,a,c, 李智鹏b   

  1. a中国科学院大连化学物理研究所大连清洁能源国家实验室, 辽宁 大连 116023;
    b中核光电科技(上海)有限公司,上海 201306;
    c陕西师范大学材料科学与工程学院, 应用表面与胶体化学教育部重点实验室, 陕西省先进能源器件重点实验室, 陕西省先进能源技术工程实验室, 先进能源材料研究所, 西安 710119
  • 投稿日期:2024-04-29
  • 作者简介:陈宇波,山西大学2022级硕士研究生,研究方向为钙钛矿太阳能电池。
    于凤阳,博士,2015年于陕西师范大学获材料化学学士学位,2021年于日本九州工业大学获得工学博士学位,目前主要从事钙钛矿太阳能光电器件性能研究。
    刘生忠,教授,陕西师范大学-中国科学院大连化学物理研究所特聘教授,洁净能源国家实验室太阳能部副部长、陕西师范大学新能源高等技术研究院院长,陕西省能源新材料与器件重点实验室主任、陕西师范大学陕西省能源新技术工程实验室主任。研究领域集中在太阳能电池、钙钛矿单晶材料、纳米材料、薄膜材料、光电功能材料、激光表面处理和光伏技术的开发、放大和生产。
  • 基金资助:
    国家重点研究计划项目(2022YFE0138100, SQ2022YFE010083),国家自然科学基金项目(52350710208),榆林学院合作基金,大连清洁能源国家实验室项目(YLU-DNL基金2022011)资助

Recent progress of two-step spin-coated formamidinium lead-based perovskite solar cells

CHEN Yubo†a, ZHENG Dexu†b, WANG Nana, LIU Jishuangb, YU Fengyang*,a, WU Sajianb, LIU Shengzhong*,a,c, LI Zhipengb   

  1. aDalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning, China;
    bCNNP Optoelectronics Technology (Shanghai) Co., Ltd., Shanghai 201306, China;
    cKey Laboratory of Applied Surface and Colloid Chemistry, Ministry of Education, Shaanxi Key Laboratory for Advanced EnergDevices, Shaanxi Engineering Lab for Advanced energy Technology, Institute for Advanced Energy Materals, School of Material: Science and Engineering, Shaanxi Normal University
  • Received:2024-04-29
  • Contact: * E-mail: szliu@dicp.ac.cn; yufengyang@dicp.ac.cn
  • About author:† These authors contributed equally to this work.
  • Supported by:
    National Key Research Program of China (2022YFE0138100, SQ2022YFE010083), the National Nature Science Foundation of China (52350710208), the Cooperation Foundation of Yulin University, and Dalian National Laboratory for Clean Energy (YLU-DNL fund 2022011).

In recent years, perovskite solar cells (PSCs) have gained much attention due to their superior photoelectric conversion performance, and the photoelectric conversion efficiency (PCE) of the perovskite solar cells prepared in laboratories up to 26%. However, despite these advancements, the scaling-up process often leads to significant efficiency losses, which limits its further commercialization. It’s crucial to develop an affordable, scalable, and controllable production method. The most commonly used preparation methods for perovskite films are the one-step method and the two-step method. Unfortunately, the one-step method suffers from a narrow processing window and environmental concerns as it requires the addition of an anti-solvent, which leads to poor reproducibility and hinders the scaling-up process. In contrast, the two-step method exhibits high reproducibility and friendliness to operators and the environment as perovskite films' growth is divided into two parts. In addition, the two-step spin coating solution method stands out for its easy fabrication, good repeatability, and high operability. It is conducive to the controllable preparation of high-quality large-area perovskite films and has great potential in commercial applications. Based on the characteristics that the preparation of perovskite is divided into two steps, the two-step solution method has more regulatory directions, and a lot of research work has been reported. In this review, the recent progress and the problems of the two-step spin coating solution method in additive engineering, interface modification, solvent engineering, and other engineering are described in detail, and the challenges and future research prospects of the two-step spin coating solution method are also analyzed. Additive engineering involves incorporating additives into inorganic components, organic components, and charge transport layers. Interface modification encompasses electron transport layer-perovskite interface as well as perovskite-hole transport layer interfaces. The purpose of this review is to provide insight into the research of large-area and high-performance perovskite solar cells.

Key words: perovskite, solar cells, two-step, spin-coating, photoelectric conversion efficiency