Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (11): 1435-1450.DOI: 10.6023/A25040135 Previous Articles     Next Articles

Review

共价有机框架的设计及质子传导性能研究进展

班渺寒a,b, 双亚洲a, 杨安平a, 郑长勇b, 张伟b,*(), 徐飞a,*()   

  1. a 西北工业大学 材料学院 西安 710072
    b 西北化工研究院有限公司 陕西省石油精细化学品重点实验室 西安 710065
  • 投稿日期:2025-04-28 发布日期:2025-06-09
  • 通讯作者: 张伟, 徐飞
  • 作者简介:

    班渺寒, 西北工业大学材料学院在职博士, 西北化工研究院有限公司工程师. 研究方向为质子交换膜燃料电池关键材料的开发.

    张伟, 西北化工研究院, 精细化工研究中心主任、教授级高级工程师, 三秦学者. 2009年于中科院大连化物所获理学博士学位. 负责、参加国家863、国家自然科学基金、中科院领域前沿创新、中科院重要方向性、振兴东北重点、中石化科技、中石油技术开发、陕西省重点研发计划等43项. 发表论文63篇, 主持编写标准3件; 申请授权专利57件. 主要从事煤、石油、清洁能源、天然气深加工及含氟精细化学品等领域的应用和基础研究.

    徐飞, 西北工业大学材料学院教授、博士生导师、国家基金委优青、洪堡学者. 于2015年在中山大学获得博士学位, 2012~2014年在日本分子科学研究所从事联合培养博士研究, 2018~2020年在德累斯顿工业大学从事洪堡博士后研究. 主要研究方向为功能多孔聚合物和炭材料的创新制备及在新能源等领域的应用.

  • 基金资助:
    项目受国家自然科学基金面上项目(52473220); 陕西省重点研发计划(2025CY-YBXM-444)

Advances in Covalent Organic Frameworks Design for Proton Conduction

Ban Miaohana,b, Shuang Yazhoua, Yang Anpinga, Zheng Changyongb, Zhang Weib,*(), Xu Feia,*()   

  1. a School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’An 710072, China
    b The Northwest Research Institute of Chemical Industry Co., Ltd., Shaanxi Key Laboratory of Petroleum for Fine Chemicals, Xi’an 710065, China
  • Received:2025-04-28 Published:2025-06-09
  • Contact: Zhang Wei, Xu Fei
  • Supported by:
    National Natural Science Foundation of China(52473220); Shaanxi Provincial Key Research and Development Program(2025CY-YBXM-444)

Proton exchange membrane fuel cells (PEMFCs) have emerged as a revolutionary technology in the field of clean energy, enabling the direct conversion of chemical energy to electricity through hydrogen-oxygen electrochemical reactions. This technology fundamentally circumvents the limitations of conventional combustion-based power generation, achieving near-zero greenhouse gas emissions while presenting a critical solution for efficient and environmentally-benign utilization of chemical energy. As the critical component of PEMFCs, the proton exchange membrane (PEM) plays an essential role in determining device-level efficiency and long-term operational stability. The PEM is a proton conductive polymer membrane existing between the anode and cathode, enabling selective proton transport while blocking electrons and gases. The ideal PEM materials must concurrently satisfy two critical operational requirements: (1) establishing efficient proton conduction pathways from anode to cathode with directional specificity, while (2) exhibiting robust resistance to gas and electricity leakage. To address these competing demands, strategic innovations in nanostructured membrane architectures continue to drive progress in next-generation PEMs. Covalent organic frameworks (COFs), a novel class of porous organic crystalline materials, demonstrate exceptional potential as next-generation PEM candidates owing to their inherent advantages including precise structural tunability, periodic pore arrangements, customizable functionality, and remarkable chemical stability. The unique architectural features of COFs provide unprecedented opportunities for proton conduction engineering. Their molecular-designed frameworks allow precise engineering of proton-conductive sites through strategic chemical modifications, while the well-defined nanochannels enable effective confinement of diverse proton carriers/vehicles. The periodic and topological pore nanoarchitectures facilitate the establishment of hierarchical proton transport pathways. These characteristics demonstrate exceptional performances in either hydrated or anhydrous proton conduction systems. This review systematically examines recent advancements in the design and preparation of COF-based proton conducting materials. Beginning with a brief introduction to the PEMFCs and current PEM, the basic knowledge of COFs and their potential structural advantages for proton conduction are discussed. Subsequently, the preparation of COF-based membrane and the key performance evaluation of PEM are summarized. Particular emphasis is placed on design strategies to enhance proton conduction including: (1) Framework design with incorporation of proton-conducting functionalities, (2) Pore nanoconfinement of proton-conducting guest moieties and (3) Pore-structure engineering for building proton conducting superhighways. The proton conductivity under different temperatures and humidities are discussed, along with the correlations to their structures and proton conduction mechanisms. Finally, the summary and perspective in this field are presented, underscoring challenges and opportunities in this burgeoning field. We hope this review would offer valuable insights into designing high-performance COF-based PEMs.

Key words: covalent organic frameworks, proton conduction, framework functionalization, pore nanoconfinement, pore-structure engineering