Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (11): 1451-1462.DOI: 10.6023/A25060204 Previous Articles    

Review

氢键化学赋能高比能锂电池关键材料

周泓宇a, 王俪颖a, 赵宇a, 吴泽轩b, 李国鹏b, 李念武b,*(), 楚攀a,*()   

  1. a 中石油深圳新能源研究院有限公司 广东深圳 518000
    b 北京化工大学 有机无机复合材料全国重点实验室 北京 100029
  • 投稿日期:2025-06-05 发布日期:2025-08-28
  • 通讯作者: 李念武, 楚攀
  • 作者简介:

    周泓宇, 男, 助理研究员, 于2017年获吉林大学学士学位; 2022年获吉林大学博士学位; 2023年加入中石油深圳新能源研究院有限公司, 目前主要研究方向为新型储能材料与电芯开发.

    李念武, 男, 硕士生导师, 北京化工大学化学工程学院副教授, 中国颗粒协会青年理事. 于2014年南京航空航天大学获得工学博士学位, 2014年~2016年在中科院化学所从事博士后研究工作, 2017年~2018年在北京纳米能源与系统研究所任助理研究员. 目前主要研究方向为锂/钠电池负极和固态电池. 在Adv. Mater. 等期刊上发表论文80余篇, SCI总引用10000余次, H-index为40, 入选2023年科睿唯安全球高被引学者, 2024全球前2%顶尖科学家年度影响力榜. 主持国家自然科学基金青年基金和面上基金项目, 作为骨干参与国家重点研发计划. 已授权国内发明专利10项, 国际PCT专利1项.

    楚攀, 中石油深圳新能源研究院有限公司高级工程师, 中国化学与物理电源行业协会储能应用分会专家委员, 中国石油学会新能源专业委员会专家委员, 中国工业节能与清洁生产协会电池回收与再利用分会专家委员, 储能领跑者联盟专家技术顾问; 长期从事能源高效利用及节能理论、新能源发电, 大规模储能技术等领域的相关工程技术研究; 参与了国内首个大规模储能方向的“国家863课题”, 主导并完成了多个集团公司的储能科技项目和储能工程项目, 近年来参与的储能项目超过50个, 在国内外权威期刊上发表SCI/EI检索论文30余篇, 并在储能领域获得了专有专利技术30余项.

  • 基金资助:
    项目受中国石油天然气股份有限公司科技项目课题(2023DJ5409); 国家自然科学基金面上项目(21975015)

Hydrogen Bond Chemistry Enabled Key Materials for High-Energy-Density Lithium Batteries

Zhou Hongyua, Wang Liyinga, Zhao Yua, Wu Zexuanb, Li Guopengb, Li Nianwub,*(), Chu Pana,*()   

  1. a PetroChina Shenzhen New Energy Research Institute Co., Ltd., Shenzhen 518000
    b State Key Laboratory of Organic-Inorganic Composites, Beijing University of Chemical Technology, Beijing 100029
  • Received:2025-06-05 Published:2025-08-28
  • Contact: Li Nianwu, Chu Pan
  • Supported by:
    Scientific research project subject of PetroChina Company Limited(2023DJ5409); National Natural Science Foundation of China(21975015)

The rapid proliferation of electric vehicles, unmanned aerial vehicles, and smart electronics has fueled escalating demand for high-energy-density lithium batteries. Current battery systems confront critical challenges: sluggish Li+ ion transport kinetics that constrain rate capability; structural degradation from substantial volume changes in silicon anodes and sulfur cathodes; accelerated stability deterioration through interfacial side reactions; and shortened cycle life due to chemical/structural degradation. This review, rooted in chemical bond fundamentals, systematically examines regulatory mechanisms of hydrogen bond (H-bond) chemistry—harnessing the dynamic reversibility of H-bonds (X—H…Y, where X and Y denote highly electronegative small-radius atoms like N, O, or F, with bond energies of 5~42 kJ•mol⁻1) to overcome material limitations across battery components. For cathodes, H-bond networks between organic coatings and layered oxides suppress lattice oxygen release and transition metal dissolution, enhancing interfacial stability, while intramolecular H-bonding in organic cathodes mitigates dissolution; concurrently, self-healing binders utilizing dynamic H-bond reorganization accommodate sulfur cathode volume expansion. In electrolytes, functional enhancement is achieved through H-bond mediation: liquid electrolytes leverage atypical H-bonds (e.g., Fδ⁻—Hδ) to optimize solvation structures and reduce desolvation barriers, thereby accelerating interfacial Li+ ion transfer; solid-state electrolytes employ H-bond chemistry to elevate ionic conductivity and Li+ ion transference numbers; gel and solid polymer electrolytes exploit H-bond networks to facilitate Li+ conduction, inhibit dendritic growth, enhance interfacial stability, enable self-healing, improve mechanical robustness, and widen electrochemical stability windows; organic-inorganic composite electrolytes similarly utilize H-bonds to augment Li+ transference numbers and conductivity. Separator modifications exploit H-bond interactions with electrolytes to improve wettability and homogenize Li+ flux. For anodes, self-healing binders dynamically reform H-bonds to repair silicon volume-expansion cracks, while artificial solid electrolyte interphase layers utilize multi-site H-bonding to guide uniform lithium deposition. Despite these advances, three pivotal challenges persist: in-situ characterization of H-bonds requires breakthroughs in advanced analytical techniques; conceptual expansion of H-bonding principles; the need for deeper mechanistic understanding of both canonical and non-canonical H-bonding in high-energy-density battery materials. Future progress demands integration of in situ characterization, artificial intelligence-assisted design, and multiscale simulations to unlock the full potential of H-bond chemistry for next-generation batteries with ultrahigh energy density and long cycle life.

Key words: hydrogen bond, ionic transport, interphase, volume expansion, self-healing