Acta Chimica Sinica ›› 2010, Vol. 68 ›› Issue (14): 1349-1356. Previous Articles     Next Articles

Full Papers

纳米二氧化钛/碳纳米管复合催化剂光催化性能及碳纳米管组分的作用

吴俊明1,姚俊杰1,杨汉培*,1,范以宁2,许波连2   

  1. (1河海大学水文水资源与水利工程科学国家重点实验室 河海大学环境科学与工程学院 浅水湖泊综合治理与资源开发教育部重点实验室 南京 210098)
    (2南京大学化学化工学院 介观化学教育部重点实验室 南京 210093)
  • 投稿日期:2010-01-13 修回日期:2010-03-09 发布日期:2010-03-20
  • 通讯作者: 杨汉培 E-mail:yanghanpei@hhu.edu.cn
  • 基金资助:

    教育部留学归国人员基金

Photocatalytic Properties and the Role of Carbon Nanotubes in TiO2/Carbon Nanotube Composites

Wu Junming1 Yao Junjie1 Yang Hanpei*,1 Fan Yining2 Xu Bolian2   

  1. (1 State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering, College of Environment Science and Engineering, Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Ministry of Education, Hohai University, Nanjing 210098)
    (2 Department of Chemistry, Key Laboratory of Mesoscopic Chemistry of Ministry of Education, Nanjing University, Nanjing 210093)
  • Received:2010-01-13 Revised:2010-03-09 Published:2010-03-20
  • Contact: Han-Pei YANG E-mail:yanghanpei@hhu.edu.cn

TiO2/carbon nanotube composites were prepared by modified sol-gel and low temperature hydrothermal synthesis. The photocatalytic activity of as-prepared composites was evaluated by the degradation of methyl orange. The samples were characterized using X-ray diffraction, transmission electron microscopy, Brunauer-Emmett-Teller adsorption analysis, thermogravimetric-differential thermal analysis and UV-Vis diffuse reflectance spectroscopy. Enhanced photocatalytic activity was obtained on the composites prepared by sol-gel method and the optimum weight ratio of carbon nanotubes over titanium dioxide in the composites was founded to be 3%. It is found that calcining composites in a moderate oxidative atmosphere allowed the compatibility of sufficient crystallization and well thermal stability of the composites. Further enhancement of photoactivity was observed on TiO2/carbon nanotube composites prepared by hydrothermal synthesis. The carbon nanotubes in the composites were virtually well covered by TiO2. The further enhanced photoactivity can be attributed to the intimate heterojunctions between TiO2 and carbon nanotubes, higher surface area, fine particles and the thermal stability of the composites obtained at the low hydrothermal temperature employed. The role of appropriate amount of carbon nanotubes in composites for enhanced activities was discussed.

Key words: TiO2, carbon nanotubes, sol-gel, low temperature hydrothermal synthesis, photocatalysis