Acta Chim. Sinica ›› 2019, Vol. 77 ›› Issue (4): 316-322.DOI: 10.6023/A18110456 Previous Articles     Next Articles

Review

水热法制备低维氮化硼纳米结构的研究进展

王海旭a,b, 杨光a,c, 程天舒a,c, 王宁a, 孙蓉a, 汪正平d   

  1. a 中国科学院深圳先进技术研究院 深圳 518055;
    b 深圳大学材料学院 深圳 518060;
    c 中国科学技术大学纳米科学技术学院 苏州 215123;
    d 美国佐治亚理工学院 亚特兰大 30332 美国
  • 投稿日期:2018-11-07 发布日期:2018-12-14
  • 通讯作者: 王宁, 孙蓉 E-mail:ning.wang@siat.ac.cn;rong.sun@siat.ac.cn
  • 作者简介:王海旭,深圳大学在读硕士研究生,现联合培养于中国科学院深圳先进技术研究院,研究方向为纳米氮化硼制备与应用;杨光,中国科学院深圳先进技术研究院客座学生,中国科学技术大学在读硕士研究生.主要从事二维纳米材料的研究;程天舒,中国科学技术大学在读研究生,现于中国科学院深圳先进技术研究院联合培养,主要研究方向为功能纳米材料制备与应用;王宁,中国科学院深圳先进技术研究院助理研究员,博士毕业于新加坡南洋理工大学材料学院.目前主要从事二维氮化硼在先进电子封装材料中的研究.作为第一作者或通讯作者,已在Materials Today,Advanced Materials Interfaces,Journal of Materials Chemistry C,Journal of Colloid and Interface Science,Frontiers in Chemistry,Langmuir等国际学术期刊上发表SCI论文20多篇.
  • 基金资助:

    项目受科技部国家重点研发计划(No.2017YFB0406200)和深圳市学科布局项目(No.JCYJ20150831154213681)资助.

Recent Advances in Hydrothermal Synthesis of Low Dimensional Boron Nitride Nanostructures

Wang Haixua,b, Yang Guanga,c, Cheng Tianshua,c, Wang Ninga, Sun Ronga, Wong Ching-Pingd   

  1. a Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055;
    b College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060;
    c Department of Nano Science and Technology Institute, University of Science and Technology of China, Suzhou 215123;
    d School of Materials Science and Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
  • Received:2018-11-07 Published:2018-12-14
  • Contact: 10.6023/A18110456 E-mail:ning.wang@siat.ac.cn;rong.sun@siat.ac.cn
  • Supported by:

    Project supported by the National Key R&D Project from Ministry of Science and Technology of China (No. 2017YFB0406200) and R&D Funds for basic Research Program of Shenzhen (No. JCYJ20150831154213681).

As an ultra-wide bandgap insulating material, boron nitride has attracted intense interest due to its high thermal conductivity, high chemical and thermal stability as well as their applications in thermal interface materials, photo/electro-catalysis, and energy storage. As for the low dimensional boron nitride nanostructures, e.g., nanosheets, nanotubes, nanorods, nanowires, nanospheres, and quantum dots, the high thermal conductivity (600 W/mK) and the ultra-large bandgap (5~6 eV) make them the promising candidate for thermal conductive composites, thermoelectric materials and electronic packaging materials, which gives rise to the hot research topic on the synthesis and properties of the boron nitride nanostructures. In this review, the recent advances in the hydrothermal synthesis of boron nitride nanostructures will be fully discussed, and the remarks on the issues need to be addressed, the comprehensive understanding of the mechanism and the new approaches for the hydrothermal synthesis will be proposed in the end.

Key words: boron nitride, hydrothermal synthesis, thermal conductivity, nanostructure, electronic packaging