Acta Chim. Sinica ›› 2019, Vol. 77 ›› Issue (4): 323-339.DOI: 10.6023/A18120497 Previous Articles     Next Articles

Special Issue: 多孔材料:金属有机框架(MOF)

Review

金属有机骨架的高通量计算筛选研究进展

刘治鲁a,b, 李炜a,b, 刘昊b, 庄旭东b, 李松a,b   

  1. a 华中科技大学 中欧清洁与可再生能源学院 武汉 430074;
    b 华中科技大学 能源与动力工程学院煤燃烧国家重点实验室 武汉 430074
  • 投稿日期:2018-12-12 发布日期:2019-01-09
  • 通讯作者: 李松 E-mail:songli@hust.edu.cn
  • 作者简介:刘治鲁,2018年6月于东北大学获得学士学位,2018年9月至今在华中科技大学李松副教授课题组攻读硕士学位.主要研究兴趣为多孔材料的高通量计算筛选及其在能源储存转化方面的应用;李炜,2015年于华中科技大学获得学士学位,2015年至今师从李松副教授攻读博士学位.主要研究兴趣为高通量筛选技术在多孔材料研究中的应用;李松,博士,副教授.2006年和2009年自山东大学和韩国成均馆大学获得学士和硕士学位.2009年至2014年在美国范德堡大学化工系学习并获得博士学位.2014年至2015年8月在美国西北大学化工系Randall Q.Snurr教授课题组进行博士后研究.2015年8月加入华中科技大学能源与动力工程学院.主要研究兴趣为金属有机骨架的高通量计算筛选及其在能源储存转化和环境领域的应用.
  • 基金资助:

    项目受国家自然科学基金(No.51606081)和中欧清洁与可再生能源学院双一流研究生教学平台培育基金(No.ICARE-RP-2018-HYDRO-001)资助.

Research Progress of High-throughput Computational Screening of Metal-Organic Frameworks

Liu Zhilua,b, Li Weia,b, Liu Haob, Zhuang Xudongb, Li Songa,b   

  1. a China-EU Institute for Clean and Renewable Energy, Huazhong University of Science and Technology, Wuhan 430074;
    b State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074
  • Received:2018-12-12 Published:2019-01-09
  • Contact: 10.6023/A18120497 E-mail:songli@hust.edu.cn
  • Supported by:

    Project supported by the National Natural Science Foundation of China (No. 51606081) and Double first-class research funding of China-EU Institute for Clean and Renewable Energy (No. ICARE-RP-2018-HYDRO-001).

During the past decades, extensive investigations on metal-organic frameworks (MOFs) with ultrahigh surface area for gas adsorption and separation have been reported. With the increasing number of possible MOFs, it has been a great challenge to discover high-performing MOFs of interest from numerous structures. High-throughput computational screening (HTCS) is a powerful tool to accelerate the development of MOFs for application of interest and explores the quantitative structure-property relationship (QSPR) to facilitate the rational design of top-performing MOFs. In this review, we summarize the MOF databases used for HTCS, mainly including MOFs collected from experimentally synthesized MOFs (i.e. eMOFs), and the hypothetical MOFs constructed by computer-aided tools (i.e. hMOFs). Moreover, there are currently two important screening strategies, molecular simulation and machine learning-based HTCS. A vast majority of HTCS have been performed by molecular simulations including grand canonical Monte Carlo (GCMC) and molecular dynamics (MD) simulations, in which the accuracy of force field parameters play a criticl role in the reliability of HTCS. GCMC is able to predict the adsorption performance of MOFs such as adsorption capacity, selectivity and heat of adsorption, whereas MD is commonly used to estimate the dynamic property of adsorbates, e.g. diffusion coefficient and permeability. Additionally, lattice GCMC and classical density functional theory (cDFT) are also highlighted for computational screening of MOFs in this review. Machine learning consisting of various algorithms is a recently developed strategy with high efficiency and low computational cost, which is a more powerful and promising technique in future. At last, the investigations on the utilization of HTCS in CH4 storage, H2 storage, CO2 capture and gas separation were outlined. By reviewing the recent research progress in HTCS, we pointed out the current challenges and opportunities for the furture development of HTCS for MOFs, which will be the major engine for the commercialization of MOFs in various applications of interests.

Key words: metal-organic framework, computational screening, molecular simulation, machine learning, adsorption and separation