Acta Chimica Sinica ›› 2019, Vol. 77 ›› Issue (9): 856-860.DOI: 10.6023/A19070252 Previous Articles Next Articles
Special Issue: 有机自由基化学
Communication
投稿日期:
2019-07-04
发布日期:
2019-08-15
通讯作者:
刘国生
E-mail:gliu@mail.sioc.ac.cn
基金资助:
Cheng, Zhongming, Chen, Pinhong, Liu, Guosheng*()
Received:
2019-07-04
Published:
2019-08-15
Contact:
Liu, Guosheng
E-mail:gliu@mail.sioc.ac.cn
Supported by:
Share
Cheng, Zhongming, Chen, Pinhong, Liu, Guosheng. Enantioselective Cyanation of Remote C—H Bonds via Cooperative Photoredox and Copper Catalysis[J]. Acta Chimica Sinica, 2019, 77(9): 856-860.
Entry | Photo cat. | Solvent | 2a+2a' Yield (ee)b | 3a+4a Yieldb |
---|---|---|---|---|
1 | Ir(bpy)3 | DMF | 31% (77%) | 47% |
2 | [Ir]-1 | DMF | 16% (77%) | 16% |
3 | [Ir]-2 | DMF | 30% (77%) | 32% |
4 | [Ru] | DMF | 8% (76%) | 11% |
5 | Eosin Y | DMF | 0 | 0 |
6 | Ir(bpy)3 | DCM | 93% (85%) | 7% |
7 | Ir(bpy)3 | PhCF3 | 57% (85%) | 6% |
8 | Ir(bpy)3 | CH3CN | 71% (79%) | 27% |
9 | Ir(bpy)3 | DCM | 0 | 0 |
10 | Ir(bpy)3 | DCM | 0 | 0 |
11 | — | DCM | 0 | 0 |
Entry | Photo cat. | Solvent | 2a+2a' Yield (ee)b | 3a+4a Yieldb |
---|---|---|---|---|
1 | Ir(bpy)3 | DMF | 31% (77%) | 47% |
2 | [Ir]-1 | DMF | 16% (77%) | 16% |
3 | [Ir]-2 | DMF | 30% (77%) | 32% |
4 | [Ru] | DMF | 8% (76%) | 11% |
5 | Eosin Y | DMF | 0 | 0 |
6 | Ir(bpy)3 | DCM | 93% (85%) | 7% |
7 | Ir(bpy)3 | PhCF3 | 57% (85%) | 6% |
8 | Ir(bpy)3 | CH3CN | 71% (79%) | 27% |
9 | Ir(bpy)3 | DCM | 0 | 0 |
10 | Ir(bpy)3 | DCM | 0 | 0 |
11 | — | DCM | 0 | 0 |
[1] |
(a) Wang, J.; Liu, H. Chin. J. Org. Chem. 2012, 32, 1643.
doi: 10.6023/cjoc1202132 |
( 王江, 柳红 , 有机化学, 2012, 32, 1643)
doi: 10.6023/cjoc1202132 |
|
(b) Fleming, F. F.; Yao, L.; Ravikumar, P. C.; Funk, L.; Shook, B. C. J. Med. Chem. 2010, 53, 7902.
doi: 10.6023/cjoc1202132 |
|
[2] | (a) Rappoport, Z. The Chemistry of the Cyano Group, Interscience Publishers, London, 1970. |
(b) Larock, R. C. Comprehensive Organic Transformations: A Guide to Functional Group Preparation, 2nd ed., Wiley-VCH, Weinheim, 1999, p. 821. | |
[3] |
Cernak, T.; Dykstra, K. D.; Tyagarajan, S.; Vachal, P.; Krska, S. W. Chem. Soc. Rev. 2016, 45, 546.
doi: 10.1039/C5CS00628G |
[4] |
(a) Meunier, B.; de Visser, S. P.; Shaik, S . Chem. Rev. 2004, 104, 3947.
doi: 10.1021/cr020443g |
(b) Ortiz de Montellano, P. R. Chem. Rev. 2010, 110, 932.
doi: 10.1021/cr020443g |
|
[5] |
For some reviews, see: (a) Che, C. -M.; Lo, V. K.-Y.; Zhou, C.-Y.; Huang, J.-S. Chem. Soc. Rev. 2011, 40, 1950.
doi: 10.1039/c0cs00142b |
(b) Lu, H.; Zhang, X. P. Chem. Soc. Rev. 2011, 40, 1899.
doi: 10.1039/c0cs00142b |
|
(c) Huang, X.; Groves, J. T. Chem. Rev. 2018, 118, 2491.
doi: 10.1039/c0cs00142b |
|
(d) Bietti, M . Angew. Chem., Int. Ed.. 2018, 57, 16618.
doi: 10.1039/c0cs00142b |
|
(e) Pei, P.; Zhang, F.; Yi, H.; Lei, A . Acta Chim. Sinica. 2017, 75, 15.
doi: 10.1039/c0cs00142b |
|
(裴朋昆, 张凡, 易红, 雷爱文, 化学学报, 2017, 75, 15.
doi: 10.1039/c0cs00142b |
|
[6] |
For some reviews, see: Stateman, L. M.; Nakafuku, K. M.; Nagib, D. A. Synthesis 2018, 50, 1569.
doi: 10.1055/s-0036-1591930 |
[7] |
(a) Martínez, C.; Muñiz, K . Angew. Chem., Int. Ed.. 2015, 54, 8287.
doi: 10.1002/anie.201501122 |
(b) Choi, G. J.; Zhu, Q.; Miller, D. C.; Gu, C. J.; Knowles, R. R . Nature. 2016, 539, 268.
doi: 10.1002/anie.201501122 |
|
(c) Chu, J. C. K.; Rovis, T . Nature. 2016, 539, 272.
doi: 10.1002/anie.201501122 |
|
(d) Chen, D.; Chu, J. C. K.; Rovis, T . J. Am. Chem. Soc.. 2017, 139, 14897.
doi: 10.1002/anie.201501122 |
|
(e) Wappes, E. A.; Fosu, S. C.; Chopko, T. C.; Nagib, D. A . Angew. Chem., Int. Ed.. 2016, 55, 9974.
doi: 10.1002/anie.201501122 |
|
(f) Liu, T.; Myers, M. C.; Yu, J.-Q. . Angew. Chem., Int. Ed.. 2017, 56, 306.
doi: 10.1002/anie.201501122 |
|
(g) Becker, P.; Duhamel, T.; Stein, C. J.; Reiher, M.; Muñiz, K . Angew. Chem., Int. Ed.. 2017, 56, 8004.
doi: 10.1002/anie.201501122 |
|
(h) Li, Z.; Wang, Q.; Zhu, J . Angew. Chem., Int. Ed.. 2018, 57, 13288.
doi: 10.1002/anie.201501122 |
|
(i) Jiang, H.; Studer, A . Angew. Chem., Int. Ed.. 2018, 57, 1692.
doi: 10.1002/anie.201501122 |
|
(j) Xia, Y.; Wang, L.; Studer, A . Angew. Chem., Int. Ed.. 2018, 57, 12940.
doi: 10.1002/anie.201501122 |
|
(k) Dauncey, E. M.; Morcillo, S. P.; Douglas, J. J.; Sheikh, N. S.; Leonori, D . Angew. Chem., Int. Ed.. 2018, 57, 744.
doi: 10.1002/anie.201501122 |
|
(l) Morcillo, S. P.; Dauncey, E. M.; Kim, J. H.; Douglas, J. J.; Sheikh, N. S.; Leonori, D . Angew. Chem., Int. Ed.. 2018, 57, 12945.
doi: 10.1002/anie.201501122 |
|
(m) Li, C.; Lang, K.; Lu, H.; Hu, Y.; Cui, X.; Wojtas, L.; Zhang, X. P . Angew. Chem., Int. Ed. 2018, 57, 16837.
doi: 10.1002/anie.201501122 |
|
(n) Chen, H.; Guo, L.; Yu, S . Org. Lett.. 2018, 20, 6255.
doi: 10.1002/anie.201501122 |
|
(o) Stateman, L. M.; Wappes, E. A.; Nakafuku, K. M.; Edwards, K. M.; Nagib, D. A . Chem. Sci.. 2019, 10, 2693.
doi: 10.1002/anie.201501122 |
|
(p) Zhang, Z.; Stateman, L. M.; Nagib, D. A . Chem. Sci.. 2019, 10, 1207.
doi: 10.1002/anie.201501122 |
|
(q) Wu, K.; Wang, L.; Colón-Rodríguez, S.; Flechsig, G.-U.; Wang, T . Angew. Chem., Int. Ed.. 2019, 58, 1774.
doi: 10.1002/anie.201501122 |
|
(r) Bao, X.; Wang, Q.; Zhu, J . Nature Commun.. 2019, 10, 768.
doi: 10.1002/anie.201501122 |
|
(s) Lang, K.; Torker, S.; Wojtas, L.; Zhang, X. P . J. Am. Chem. Soc.. 2019, DOI: 10.1021/jacs.9b05850.
doi: 10.1002/anie.201501122 |
|
[8] |
(a) Peng, Y.; Lin, J.-S.; Li, L.; Zheng, S.-C.; Xiong, Y.-P.; Zhao, L.-J.; Tan, B.; Liu, X.-Y. Angew. Chem., Int. Ed. 2014, 53, 11890.
doi: 10.1002/anie.201405401 |
(b) Zhang, J.; Li, Y.; Zhang, F.; Hu, C.; Chen, Y . Angew. Chem., Int. Ed. 2016, 55, 1872.
doi: 10.1002/anie.201405401 |
|
(c) Wang, C. Y.; Harms, K.; Meggers, E . Angew. Chem., Int. Ed.. 2016, 55, 13495.
doi: 10.1002/anie.201405401 |
|
(d) Hu, A.; Guo, J.-J.; Pan, H.; Tang, H.; Gao, Z.; Zuo, Z . J. Am. Chem. Soc.. 2018, 140, 1612.
doi: 10.1002/anie.201405401 |
|
(e) Zhu, Y.; Huang, K.; Pan, J.; Qiu, X.; Luo, X.; Qin, Q.; Wei, J.; Wen, X.; Zhang, L.; Jiao, N . Nat. Commun.. 2018, 9, 2625.
doi: 10.1002/anie.201405401 |
|
(f) Wu, X.; Zhang, H.; Tang, N.; Wu, Z.; Wang, D.; Ji, M.; Xu, Y.; Wang, M.; Zhu, C . Nat. Commun.. 2018, 9, 3343.
doi: 10.1002/anie.201405401 |
|
(g) Wu, X.; Wang, M.; Huan, L.; Wang, Wang, D. J.; Zhu, C . Angew. Chem., Int. Ed.. 2018, 57, 1640.
doi: 10.1002/anie.201405401 |
|
(h) Wang, M.; Huang, L.; Zhu, C . Org. Lett.. 2019, 21, 821.
doi: 10.1002/anie.201405401 |
|
(i) Kim, I.; Park, B.; Kang, G.; Kim, J.; Jung, H.; Lee, H.; Baik, M.; Hong, S . Angew. Chem., Int. Ed.. 2018, 57, 15517.
doi: 10.1002/anie.201405401 |
|
(j) Guan, H.; Sun, S.; Mao, Y.; Chen, L.; Lu, R.; Huang, J.; Liu, L . Angew. Chem. Int. Ed.. 2018, 57, 11413.
doi: 10.1002/anie.201405401 |
|
(k) Bao, X.; Wang, Q.; Zhu, J . Angew. Chem. Int. Ed.. 2019, 58, 2139.
doi: 10.1002/anie.201405401 |
|
[9] |
(a) Yu, P.; Zheng, S.-C.; Yang, N.-Y.; Tan, B.; Liu, X.-Y . Angew. Chem., Int. Ed.. 2015, 54, 4041.
doi: 10.1002/anie.201412310 |
(b) Cui, X.; Xu, X.; Jin, L.-M.; Wojtasa, L.; Zhang, X. P. Chem. Sci. 2015, 6, 1219.
doi: 10.1002/anie.201412310 |
|
(c) Chen, J.-Q.; Wei, Y.-L.; Xu, G.-Q.; Liang, Y.-M.; Xu, P.-F . Chem. Commun.. 2016, 52, 6455.
doi: 10.1002/anie.201412310 |
|
(d) Li, T.; Yu, P.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y . Chin. J. Chem.. 2016, 34, 490.
doi: 10.1002/anie.201412310 |
|
(e) Li, L.; Ye, L.; Ni, S.-F.; Li, Z.-L.; Chen, S.; Du, Y.-M.; Li, X.-H.; Dang, L.; Liu, X.-Y . Org. Chem. Front.. 2017, 4, 2139.
doi: 10.1002/anie.201412310 |
|
(f) Yuan, W.; Zhou. Z.; Gong, L.; Meggers, E . Chem. Commun.. 2017, 53, 8964.
doi: 10.1002/anie.201412310 |
|
(g) Li, T.; Yu, P.; Du, Y.-M.; Lin, J.-S.; Zhi, Y.; Liu, X.-Y . J. Fluorine Chem. 2017, 203, 210.
doi: 10.1002/anie.201412310 |
|
(h) Wang, N.; Ye, L.; Li, Z.-L.; Li, L.; Li, Z.; Zhang, H.-X.; Guo, Z.; Gu, Q.-S.; Liu, X.-Y . Org. Chem. Front. 2018, 5, 2810.
doi: 10.1002/anie.201412310 |
|
(i) Chen, J.-Q.; Chang, R.; Lin, J.-B.; Luo, Y.-C.; Xu, P.-F . Org. Lett. 2018, 20, 2395.
doi: 10.1002/anie.201412310 |
|
(j) Wang, Y.; Wen, X.; Cui, X.; Zhang, X. P . J. Am. Chem. Soc. 2018, 140, 4792.
doi: 10.1002/anie.201412310 |
|
(k) Wen, X.; Wang, Y.; Zhang, X. P . Chem. Sci. 2018, 9, 5082.
doi: 10.1002/anie.201412310 |
|
(l) Wu, S.; Wu, X.; Wang, D.; Zhu, C . Angew. Chem., Int. Ed.. 2019, 58, 1499.
doi: 10.1002/anie.201412310 |
|
(m) Chuentragool, P.; Yadagiri, D.; Morita, T.; Sarkar, S.; Parasram, M.; Wang, Y.; Gevorgyan, V . Angew. Chem. Int. Ed.. 2019, 58, 1794.
doi: 10.1002/anie.201412310 |
|
[10] |
Wang, F.; Chen, P.; Liu, G . Acc. Chem. Res. 2018, 51, 2036.
doi: 10.1021/acs.accounts.8b00265 |
[11] |
(a) Zhang, W.; Wang, F.; McCann, S. D.; Wang, D.; Chen, P.; Stahl, S. S.; Liu, G . Science 2016, 353, 1014.
doi: 10.1126/science.aaf7783 |
(b) Zhang, W.; Wu, L.; Chen, P.; Liu, G . Angew. Chem., Int. Ed. 2019, 58, 6425.
doi: 10.1126/science.aaf7783 |
|
(c) Zhang, W.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2017, 139, 7709.
doi: 10.1126/science.aaf7783 |
|
[12] |
For cyanations see: (a) Wang, F.; Wang, D.; Wan, X.; Wu, L.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2016, 138, 15547.
doi: 10.1021/jacs.6b10468 |
(b) Wang, D.; Wang, F.; Chen, P.; Lin, Z.; Liu, G. Angew. Chem., Int. Ed. 2017, 56, 2054.
doi: 10.1021/jacs.6b10468 |
|
(c) Lu, F.-D.; Liu, D.; Zhu, L.; Lu, L.-Q.; Yang, Q.; Zhou, Q.-Q.; Wei, Y.; Lan, Y.; Xiao, W.-J . J. Am. Chem. Soc. 2019, 141, 6167.
doi: 10.1021/jacs.6b10468 |
|
For arylations, see:(d) Wu, L.; Wang, F.; Wan, X.; Wang, D.; Chen, P.; Liu, G . J. Am. Chem. Soc.. 2017, 139, 2904.
doi: 10.1021/jacs.6b10468 |
|
(e) Wang, D.; Wu, L.; Wang, F.; Wan, X.; Chen, P.; Lin, Z.; Liu, G . J. Am. Chem. Soc.. 2017, 139, 6811.
doi: 10.1021/jacs.6b10468 |
|
For alkynylation, see: (f) Fu, L.; Zhou, S.; Wan, X.; Chen, P.; Liu, P . J. Am. Chem. Soc.. 2018, 140, 10965.
doi: 10.1021/jacs.6b10468 |
|
[13] |
Wang, D.; Zhu, N.; Chen, P.; Lin, Z.; Liu, G . J. Am. Chem. Soc. 2017, 139, 15632.
doi: 10.1021/jacs.7b09802 |
[14] |
(a) Curran, D. P.; Kim, D.; Liu, H. T.; Shen, W . J. Am. Chem. Soc.. 1988, 110, 5900.
doi: 10.1021/ja00225a052 |
(b) Kim, S.; Lee, T. A.; Song, Y . Synlett 1998, 471. (c) Zlotorzynska, M.; Sammis, G. M. Org. Lett. 2011, 13, 6264.
doi: 10.1021/ja00225a052 |
[1] | Zhanglong Yu, Zhongliang Li, Changjiang Yang, Qiangshuai Gu, Xinyuan Liu. Research Progress on Copper-Catalyzed Enantioselective Desymmetrization of Diols★ [J]. Acta Chimica Sinica, 2023, 81(8): 955-966. |
[2] | Kongxi Qiu, Jie Li, Haowen Ma, Wei Zhou, Qian Cai. Recent Advances in the Construction of Nitrogen-Containing Heterocycles via Trapping Organocopper(I) Intermediates [J]. Acta Chimica Sinica, 2023, 81(1): 42-63. |
[3] | Qinghao Xu, Lipu Wei, Zhen Zhang, Bin Xiao. Copper Promoted Synthesis of Tetraalkylgermanes from Germanium Electrophiles and Alkyl Bromides※ [J]. Acta Chimica Sinica, 2022, 80(4): 428-431. |
[4] | Hongshao Jia, Baokun Qiao, Zhiyong Jiang. Photoredox Catalytic Radical Coupling to Access β-Fluoro α-Amino Acid Derivatives [J]. Acta Chimica Sinica, 2021, 79(12): 1477-1480. |
[5] | Zhang Ronghua, Xu Bing, Zhang Zhanming, Zhang Junliang. Ming-Phos/Copper(I)-Catalyzed Asymmetric[3+2] Cycloaddition of Azomethine Ylides with Nitroalkenes [J]. Acta Chimica Sinica, 2020, 78(3): 245-249. |
[6] | Liang Huan, Gou Along, Gao Zhupeng, Lei Linsheng, Wang Bowen, Yu Lan, Xu Xuetao, Wang Shaohua. A New Strategy for the Synthesis of Tertiary Amides via a Copper-Catalyzed Decyanation Reaction of N,N-Disubstituted 2-Aminomalononitriles [J]. Acta Chimica Sinica, 2020, 78(10): 1064-1068. |
[7] | Lin, Fengguirong, Liang, Yujie, Li, Xinyao, Song, Song, Jiao, Ning. Copper-catalyzed ortho C-H Azidation of Anilines Using Molecular Oxygen as Terminal Oxidant [J]. Acta Chimica Sinica, 2019, 77(9): 906-910. |
[8] | Zhang, Zhen, Gong, Li, Zhou, Xiao-Yu, Yan, Si-Shun, Li, Jing, Yu, Da-Gang. Radical-Type Difunctionalization of Alkenes with CO2 [J]. Acta Chimica Sinica, 2019, 77(9): 783-793. |
[9] | Zhang, Hong-Hao, Yu, Shouyun. Advances on Transition Metals and Photoredox Cooperatively Catalyzed Allylic Substitutions [J]. Acta Chimica Sinica, 2019, 77(9): 832-840. |
[10] | Zhang, Heng, Mou, Xueqing, Chen, Gong, He, Gang. Copper-catalyzed Intramolecular Aminoperfluoroalkylation Reaction of O-Homoallyl Benzimidates [J]. Acta Chimica Sinica, 2019, 77(9): 884-888. |
[11] | Liu, Yu-Cheng, Zheng, Xiao, Huang, Pei-Qiang. Photoredox Catalysis for the Coupling Reaction of Nitrones with Aromatic Tertiary Amines [J]. Acta Chimica Sinica, 2019, 77(9): 850-855. |
[12] | Li Xue-Fei, Lin Jin-Shun, Wang Jian, Li Zhong-Liang, Gu Qiang-Shuai, Liu Xin-Yuan. Cu/Chiral Phosphoric Acid-Catalyzed Asymmetric Radical-Initiated Aminoarylation of Alkenes [J]. Acta Chimica Sinica, 2018, 76(11): 878-882. |
[13] | Wu Zijun, Wang Jian. Decarboxylative 1,6-Conjugate Addition of α-Keto Acids with para-Quinone Methides Enabled by Photoredox Catalysis [J]. Acta Chim. Sinica, 2017, 75(1): 74-79. |
[14] | Zhou Quanquan, Liu Dan, Xiao Wenjing, Lu Liangqiu. Visible-Light Photoredox Catalytic α-Cyanation Reactions of Tertiary Amines [J]. Acta Chim. Sinica, 2017, 75(1): 110-114. |
[15] | Rong Jian, Ni Chuanfa, Wang Yunze, Kuang Cuiwen, Gu Yucheng, Hu Jinbo. Radical Fluoroalkylation of Aryl Alkenes with Fluorinated Sulfones by Visible-Light Photoredox Catalysis [J]. Acta Chimica Sinica, 2017, 75(1): 105-109. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||