Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (1): 69-79.DOI: 10.6023/A21080410 Previous Articles Next Articles
Account
投稿日期:
2021-08-29
发布日期:
2021-10-22
通讯作者:
鞠熀先
作者简介:
师瑶, 2020年本科毕业于海南医学院热带医学与检验医学院, 2020~2023年为海南医学院热带医学与检验医学院硕士研究生, 主要从事热带病检测方法的研究. |
夏乾峰, 临床检验诊断学博士, 教授, 博士生导师. 现任海南医学院热带医学与检验医学院常务副院长(主持工作), 中华医学会热带病与寄生虫学专业委员会秘书长、海南省医学会热带病与寄生虫专业委员会主委、中国医检整合联盟常务理事、中国空间微生物学会委员、海南省微生物学会副理事长等. 研究方向为临床检验新方法和热带病防控关键技术. 主持传染病国家重大科技专项、海南省重大科技专项课题各1项、国家自然科学基金3项. 以第一或通讯作者发表论文50余篇(SCI收录28篇), 获海南省科技进步二等奖1项, 四川省科技进步二等奖1项, 海南省教学成果二等奖3项, 研发的新冠抗体检测试剂盒获欧盟CE认证, 并出口欧洲. |
何政清, 2016年本科毕业于赣南医学院临床医学院, 2017~2020年为海南医学院基础医学院硕士研究生, 主要从事病原微生物核酸检测的研究. |
鞠熀先, 1986、1989和1992年分别获南京大学理学学士、硕士和博士学位, 后留校任教, 1993年为副教授, 1999年聘为教授、博士生导师. 2003年获国家杰出青年科学基金, 2007年遴选为“长江学者”特聘教授, 2005~2014年主持国家自然科学基金创新研究群体项目、2009~2014年主持“973”计划项目. 现为生命分析国家重点实验室主任、国际电化学会会士、英国皇家化学会会士. 研究方向为分子诊断与生物分析化学, 主要研究领域为免疫分析、细胞分析化学、纳米生物传感和临床分子诊断, 至2021年10月, 发表论文772篇; 英文专著6部, 中文专著、教材7部, 专章20篇; SCI刊物他引35000多次, h-index为99 (Google Scholar h-index为107, 引用42000多次). |
基金资助:
Yao Shia,b, Qianfeng Xiaa, Zhengqing Hea,b, Huangxian Jub()
Received:
2021-08-29
Published:
2021-10-22
Contact:
Huangxian Ju
Supported by:
Share
Yao Shi, Qianfeng Xia, Zhengqing He, Huangxian Ju. Biosensing Technology for Dengue Virus Detection[J]. Acta Chimica Sinica, 2022, 80(1): 69-79.
Detection method | Type of Dengue | Nano materials | Limit of detection | Linear range | Reference | |
---|---|---|---|---|---|---|
Optical DNA biosensor | Dengue serotype 2 | Silica nanospheres | 0.2 amol/L | 1.0×10-16~1.0×10-10 mol/L | [ | |
SERS based lateral flow biosensor | NS1 protein | — | 15 ng/mL | 15~500 ng/mL | [ | |
Label-free biosensor | Dengue serotype 2 | — | 1 pmol/L | — | [ | |
Colorimetric biosensor | Different Dengue serotypes | Silver nanoparticles | — | — | [ | |
SPR biosensor | — | AuNPs | — | 31~260 copies/mL | [ | |
Optical DNA biosensor | Dengue serotype 2 | Silica nanoparticles | 1 zmol/L | 1.0×10-15~1.0×10-11 mol/L | [ | |
SRP biosensor | Dengue serotype 2 and 3 | — | 2×104 particles/mL | — | [ | |
LSPR fiber optic sensor | Dengue anti-NS1 antibody | Gold nanoparticles | 1.54 nmol/L | — | [ | |
LSPR biosensor | Dengue anti-NS1 antibody | — | 5.73 pg/mm2 | — | [ | |
SRP biosensor | Dengue serotype 2 | rGO-PAMAM | — | 0.08~0.5 pmol/L | [ | |
Optical DNA biosensor | Dengue DNA sequence | AuNPs | 1×10-29 mol/L | 1.0×10-21~1.0×10-12 mol/L | [ | |
Optical DNA biosensor | Dengue DNA sequence | — | 2 fmol/L | ≈1 pmol/L | [ | |
SERS biosensor | NS1 protein | Silver nanorods | — | — | [ | |
SERS biosensor | NS1 protein | AuNPs | 7.67 ng/mL | — | [ | |
SERS biosensor | Dengue DNA sequence | — | 0.49 fmol/L | 1 fmol/L~10 nmol/L | [ | |
SRP biosensor | Dengue serotype 2 | — | 0.08 pmol/L | 0.08~5 pmol/L | [ |
Detection method | Type of Dengue | Nano materials | Limit of detection | Linear range | Reference | |
---|---|---|---|---|---|---|
Optical DNA biosensor | Dengue serotype 2 | Silica nanospheres | 0.2 amol/L | 1.0×10-16~1.0×10-10 mol/L | [ | |
SERS based lateral flow biosensor | NS1 protein | — | 15 ng/mL | 15~500 ng/mL | [ | |
Label-free biosensor | Dengue serotype 2 | — | 1 pmol/L | — | [ | |
Colorimetric biosensor | Different Dengue serotypes | Silver nanoparticles | — | — | [ | |
SPR biosensor | — | AuNPs | — | 31~260 copies/mL | [ | |
Optical DNA biosensor | Dengue serotype 2 | Silica nanoparticles | 1 zmol/L | 1.0×10-15~1.0×10-11 mol/L | [ | |
SRP biosensor | Dengue serotype 2 and 3 | — | 2×104 particles/mL | — | [ | |
LSPR fiber optic sensor | Dengue anti-NS1 antibody | Gold nanoparticles | 1.54 nmol/L | — | [ | |
LSPR biosensor | Dengue anti-NS1 antibody | — | 5.73 pg/mm2 | — | [ | |
SRP biosensor | Dengue serotype 2 | rGO-PAMAM | — | 0.08~0.5 pmol/L | [ | |
Optical DNA biosensor | Dengue DNA sequence | AuNPs | 1×10-29 mol/L | 1.0×10-21~1.0×10-12 mol/L | [ | |
Optical DNA biosensor | Dengue DNA sequence | — | 2 fmol/L | ≈1 pmol/L | [ | |
SERS biosensor | NS1 protein | Silver nanorods | — | — | [ | |
SERS biosensor | NS1 protein | AuNPs | 7.67 ng/mL | — | [ | |
SERS biosensor | Dengue DNA sequence | — | 0.49 fmol/L | 1 fmol/L~10 nmol/L | [ | |
SRP biosensor | Dengue serotype 2 | — | 0.08 pmol/L | 0.08~5 pmol/L | [ |
Electrode | Detection technique | Analyte | Linear range | Limit of detection | Reference |
---|---|---|---|---|---|
CNT-SPE | CA | NS1 | 0.04~2 μg/mL | 12 ng/mL | [ |
PAH/CNT | CV | NS1 | 0.1~2.5 μg/mL | 0.035 μg/mL | [ |
Au/CD | DPV | NS1 | 1~100 ng/mL | 0.33 ng /mL | [ |
Nanoporous alumina/Pt wire | DPV | DENV-2 | 1~103 pfu/mL | 1 pfu/mL | [ |
PGE | DPV | DENV-1 | 1~40 nmol/L | 0.92 nmol/L | [ |
Nanoporous alumina/Pt wire | DPV | DENV1(31-mer ssDNA) | 10-12~10-6 mol/L | 9.55×10-12 mol/L | [ |
ZnO/Pt-Pd | CV/DPV | DENV target ssDNA | 1×10-6~100×10-6 mol/L | 4.3×10-6 mol/L | [ |
Mn2O3 nanofiber | CV/DPV/EIS | Dengue consensus primer | 1 nmol/L~1 μmol/L | 120×10-21 mol/L | [ |
Thiophene-SPE/AuNPs /Protein A | CV/EIS | NS1 | 0.04~0.6 μg/mL | 0.015 μg/mL | [ |
PGE | DPV | DENV-3 | 10~100 nmol/L | 3.09 nmol/L | [ |
Au | EIS/CV | NS1 | 0.1~10 μg/mL | 0.09 μg/mL | [ |
Au | EIS/CV | NS1 | 0.01~1.00 μg/mL | 30 ng/mL | [ |
Au/liposome | EIS/CV | DENV-1~DENV-3 | 0.01~1.00 μg/mL | 3 ng/mL | [ |
AuNPs/PVB | EIS/CV | Dengue fever and Dengue haemorrhagic | — | — | [ |
Fe3O4/PVB | EIS/CV | DENV-1~DENV-3 | — | — | [ |
AuNPs/PANI/CramoLL | EIS/CV | Glycoproteins from DENV-1~DENV-3 | — | — | [ |
AuNPs/PANI/BMOLL | EIS/CV | Glycoproteins from DENV-1~DENV-3 | — | — | [ |
CNT/polypyrrole-NHS | EIS/CV | DENV-2 | 10-13~10-5 g/mL | — | [ |
Cys-MBA-AuNPs | EIS/CV | DENV-1~DENV-4 | — | — | [ |
GO-PMC | EIS/CV | DENV-1~DENV-4 | 1~2×103 pfu/mL | 0.12 pfu/mL | [ |
AAO | EIS/CV | DENV DNA | 1×10-12~1×10-6 mol/L | 2.7×10-12 mol/L | [ |
SiO2/APTES-GO | EIS | DENV DNA | — | 1 fmol/L | [ |
Electrode | Detection technique | Analyte | Linear range | Limit of detection | Reference |
---|---|---|---|---|---|
CNT-SPE | CA | NS1 | 0.04~2 μg/mL | 12 ng/mL | [ |
PAH/CNT | CV | NS1 | 0.1~2.5 μg/mL | 0.035 μg/mL | [ |
Au/CD | DPV | NS1 | 1~100 ng/mL | 0.33 ng /mL | [ |
Nanoporous alumina/Pt wire | DPV | DENV-2 | 1~103 pfu/mL | 1 pfu/mL | [ |
PGE | DPV | DENV-1 | 1~40 nmol/L | 0.92 nmol/L | [ |
Nanoporous alumina/Pt wire | DPV | DENV1(31-mer ssDNA) | 10-12~10-6 mol/L | 9.55×10-12 mol/L | [ |
ZnO/Pt-Pd | CV/DPV | DENV target ssDNA | 1×10-6~100×10-6 mol/L | 4.3×10-6 mol/L | [ |
Mn2O3 nanofiber | CV/DPV/EIS | Dengue consensus primer | 1 nmol/L~1 μmol/L | 120×10-21 mol/L | [ |
Thiophene-SPE/AuNPs /Protein A | CV/EIS | NS1 | 0.04~0.6 μg/mL | 0.015 μg/mL | [ |
PGE | DPV | DENV-3 | 10~100 nmol/L | 3.09 nmol/L | [ |
Au | EIS/CV | NS1 | 0.1~10 μg/mL | 0.09 μg/mL | [ |
Au | EIS/CV | NS1 | 0.01~1.00 μg/mL | 30 ng/mL | [ |
Au/liposome | EIS/CV | DENV-1~DENV-3 | 0.01~1.00 μg/mL | 3 ng/mL | [ |
AuNPs/PVB | EIS/CV | Dengue fever and Dengue haemorrhagic | — | — | [ |
Fe3O4/PVB | EIS/CV | DENV-1~DENV-3 | — | — | [ |
AuNPs/PANI/CramoLL | EIS/CV | Glycoproteins from DENV-1~DENV-3 | — | — | [ |
AuNPs/PANI/BMOLL | EIS/CV | Glycoproteins from DENV-1~DENV-3 | — | — | [ |
CNT/polypyrrole-NHS | EIS/CV | DENV-2 | 10-13~10-5 g/mL | — | [ |
Cys-MBA-AuNPs | EIS/CV | DENV-1~DENV-4 | — | — | [ |
GO-PMC | EIS/CV | DENV-1~DENV-4 | 1~2×103 pfu/mL | 0.12 pfu/mL | [ |
AAO | EIS/CV | DENV DNA | 1×10-12~1×10-6 mol/L | 2.7×10-12 mol/L | [ |
SiO2/APTES-GO | EIS | DENV DNA | — | 1 fmol/L | [ |
[1] |
Castro, M. C.; Wilson, M. E.; Bloom, D. E. Lancet Infect. Dis. 2017, 17, e70.
doi: 10.1016/S1473-3099(16)30545-X |
[2] |
Chong, H. Y.; Leow, C. Y.; Abdul Majeed, A. B.; Leow, C. H. Virus Res. 2019, 274, a197770.
|
[3] |
Khristunova, E.; Dorozhko, E.; Korotkova, E.; Kratochvil, B.; Vyskocil, V.; Barek, J. Sensors 2020, 20, 4600.
doi: 10.3390/s20164600 |
[4] |
Guzman, M. G.; Gubler, D. J.; Izquierdo, A.; Martinez, E.; Halstead, S. B. Nat. Rev. Dis. Primers 2016, 2, 16055.
doi: 10.1038/nrdp.2016.55 |
[5] |
Castillo Signor, L. D. C.; Edwards, T.; Escobar, L. E.; Mencos, Y.; Matope, A.; Castaneda Guzman, M.; Adams, E. R.; Cuevas, L. E. PLoS Negl. Trop. Dis. 2020, 14, e0008535.
doi: 10.1371/journal.pntd.0008535 |
[6] |
Li, G. H.; Ning, Z. J.; Liu, Y. M.; Li, X. H. Front. Cell. Infect. Mi. 2017, 7, 449.
|
[7] |
Bhatt, S.; Gething, P. W.; Brady, O. J.; Messina, J. P.; Farlow, A. W.; Moyes, C. L.; Drake, J. M.; Brownstein, J. S.; Hoen, A. G.; Sankoh, O.; Myers, M. F.; George, D. B.; Jaenisch, T.; Wint, G. R.; Simmons, C. P.; Scott, T. W.; Farrar, J. J.; Hay, S. I. Nature 2013, 496, 504.
doi: 10.1038/nature12060 |
[8] |
Brady, O. J.; Gething, P. W.; Bhatt, S.; Messina, J. P.; Brownstein, J. S.; Hoen, A. G.; Moyes, C. L.; Farlow, A. W.; Scott, T. W.; Hay, S. I. PLoS Negl. Trop. Dis. 2012, 6, e1760.
doi: 10.1371/journal.pntd.0001760 |
[9] |
Banu, S.; Hu, W.; Guo, Y.; Naish, S.; Tong, S. PLoS One 2014, 9, e89440.
doi: 10.1371/journal.pone.0089440 |
[10] |
Supadmi, W.; Suwantika, A. A.; Perwitasari, D. A.; Abdulah, R. Value Health 2019, 18, 132.
|
[11] |
Shepard, D. S.; Undurraga, E. A.; Halasa, Y. A.; Stanaway, J. D. Lancet Infect. Dis. 2016, 16, 935.
doi: 10.1016/S1473-3099(16)00146-8 |
[12] |
Cassedy, A.; Parle McDermott, A.; O'Kennedy, R. Front. Mol. Biosci. 2021, 8, 637559.
doi: 10.3389/fmolb.2021.637559 |
[13] |
Kim, J. H.; Cho, C. H.; Ryu, M. Y.; Kim, J. G.; Lee, S. J.; Park, T. J.; Park, J. P. PLoS One 2019, 14, e0222144.
doi: 10.1371/journal.pone.0222144 |
[14] |
Yang, Y. H.; Song, Z. Y.; Zheng, X. L. J. Pathogen Biol. 2017, 12, 803 ; (in Chinese)
|
( 杨永红, 宋璋瑶, 郑学礼, 中国病原生物学杂志, 2017, 12, 803.)
|
|
[15] |
Jiang, L. Y.; Di, B.; Yang, Z. C. J. Mol. Diagn. Ther. 2018, 3, 196.; (in Chinese)
|
( 蒋力云, 狄飚, 杨智聪, 分子诊断与治疗杂志, 2018, 3, 196.)
|
|
[16] |
Rodriguez, R. A.; Pepper, I. L.; Gerba, C. P. Appl. Environ. Microb. 2009, 75, 297.
doi: 10.1128/AEM.01150-08 |
[17] |
Ariffin, E. Y.; Tan, L. L.; Abd Karim, N. H.; Heng, L. Y. Sensors 2018, 18, 1173.
doi: 10.3390/s18041173 |
[18] |
Darwish, N. T.; Sekaran, S. D.; Alias, Y.; Khor, S. M. J. Pharmaceut. Biomed. 2018, 149, 591.
doi: 10.1016/j.jpba.2017.11.064 |
[19] |
Anusha, J. R.; Kim, B. C.; Yu, K. H.; Raj, C. J. Biosens. Bioelectron. 2019, 142, 111511.
doi: 10.1016/j.bios.2019.111511 |
[20] |
Kwakye, S.; Goral, V. N.; Baeumner, A. J. Biosens. Bioelectron. 2006, 21, 2217.
doi: 10.1016/j.bios.2005.11.017 |
[21] |
Jain, J.; Okabayashi, T.; Kaur, N.; Nakayama, E.; Shioda, T.; Gaind, R.; Kurosu, T.; Sunil, S. J. Virol. 2018, 15, 84.
doi: 10.1186/s12985-018-1000-0 |
[22] |
Teles, F. S. Anal. Chim. Acta 2011, 687, 28.
doi: 10.1016/j.aca.2010.12.011 |
[23] |
Guzman, M. G.; Kouri, G. Int. J. Infect. Dis. 2004, 8, 69.
doi: 10.1016/j.ijid.2003.03.003 |
[24] |
Raafat, N.; Loganathan, S.; Mukaka, M.; Blacksell, S. D.; Maude, R. J. PLoS Negl. Trop. Dis. 2021, 15, e0009359.
doi: 10.1371/journal.pntd.0009359 |
[25] |
Wang, J.; Ma, P.; Kim, D. H.; Liu, B. F.; Demirci, U. Nano Today 2021, 37, 101066.
doi: 10.1016/j.nantod.2020.101066 |
[26] |
Sekaran, S. D.; Soe, H. J. Expert Rev. Mol. Diagn. 2017, 17, 217.
doi: 10.1080/14737159.2017.1275963 |
[27] |
Pashazadeh, P.; Mokhtarzadeh, A.; Hasanzadeh, M.; Hejazi, M.; Hashemi, M.; De La Guardia, M. Biosens. Bioelectron. 2017, 87, 1050.
doi: 10.1016/j.bios.2016.08.012 |
[28] |
Asokanathan, C.; Tierney, S.; Ball, C. R.; Buckle, G.; Day, A.; Tanley, S.; Bristow, A.; Markey, K.; Xing, D.; Yuen, C. T. Anal. Biochem. 2018, 540, 15.
|
[29] |
Alamdari, D. H.; Kostidou, E.; Paletas, K.; Sarigianni, M.; Konstas, A. G.; Karapiperidou, A.; Koliakos, G. Free Radical Bio. Med. 2005, 39, 1362.
doi: 10.1016/j.freeradbiomed.2005.06.023 |
[30] |
Kim, A.; Li, C. R.; Jin, C. F.; Lee, K. W.; Lee, S. H.; Shon, K. J.; Park, N. G.; Kim, D. K.; Kang, S. W.; Shim, Y. B.; Park, J. S. Chemosphere 2007, 68, 1204.
doi: 10.1016/j.chemosphere.2007.01.079 |
[31] |
Thiha, A.; Ibrahim, F. Sensors 2015, 15, 11431.
doi: 10.3390/s150511431 |
[32] |
Hosseini, S.; Ibrahim, F.; Djordjevic, I.; Rothan, H. A.; Yusof, R.; Van Der Marel, C.; Benzina, A.; Koole, L. H. Eur. Polym. J. 2014, 60, 14.
doi: 10.1016/j.eurpolymj.2014.08.010 |
[33] |
Hosseini, S.; Azari, P.; Farahmand, E.; Gan, S. N.; Rothan, H. A.; Yusof, R.; Koole, L. H.; Djordjevic, I.; Ibrahim, F. Biosens. Bioelectron. 2015, 69, 257.
doi: 10.1016/j.bios.2015.02.034 |
[34] |
Farahmand, E.; Ibrahim, F.; Hosseini, S.; Rothan, H. A.; Yusof, R.; Koole, L. H.; Djordjevic, I. Appl. Surf. Sci. 2015, 353, 1310.
doi: 10.1016/j.apsusc.2015.07.004 |
[35] |
Hosseini, S.; Azari, P.; Aeinehvand, M. M.; Rothan, H. A.; Djordjevic, I.; Martinez Chapa, S. O.; Madou, M. J. Appl. Sci. 2016, 6, 336.
doi: 10.3390/app6110336 |
[36] |
Ortega, G. A.; Pérez-Rodríguez, S.; Reguera, E. RSC Adv. 2017, 7, 4921.
doi: 10.1039/C6RA25992H |
[37] |
Bang, J.; Park, H.; Choi, W. I.; Sung, D.; Lee, J. H.; Lee, K. Y.; Kim, S. New J. Chem. 2018, 42, 12607.
doi: 10.1039/C8NJ02244E |
[38] |
Chong, Z. L.; Sekaran, S. D.; Soe, H. J.; Peramalah, D.; Rampal, S.; Ng, C. W. BMC Infect. Dis. 2020, 20, 210.
doi: 10.1186/s12879-020-4911-5 |
[39] |
Mairiang, D.; Songjaeng, A.; Hansuealueang, P.; Malila, Y.; Lertsethtakarn, P.; Palomares Reyes, C.; Silva Caso, W.; Del Valle, L. J.; Aguilar Luis, M. A.; Weilg, C.; Martins-Luna, J.; Vinas Ospino, A.; Stimmler, L.; Mallqui Espinoza, N.; Aquino Ortega, R.; Espinoza Espiritu, W.; Misaico, E.; Del Valle Mendoza, J. Int. J. Infect. Dis. 2019, 81, 31.
doi: 10.1016/j.ijid.2019.01.022 |
[40] |
Palomares Reyes, C.; Silva Caso, W.; Del Valle, L. J.; Aguilar Luis, M. A.; Weilg, C.; Martins Luna, J.; Vinas Ospino, A.; Stimmler, L.; Mallqui Espinoza, N.; Aquino Ortega, R.; Espinoza Espiritu, W.; Misaico, E.; Del Valle-Mendoza, J. Int. J. Infect. Dis. 2019, 81, 31.
doi: 10.1016/j.ijid.2019.01.022 |
[41] |
Xu, Y.; Wang, T.; Chen, Z.; Jin, L.; Wu, Z.; Yan, J.; Zhao, X.; Cai, L.; Deng, Y.; Li, S.; He, N. Chin. Chem. Lett. 2021, 17, 9.
|
[42] |
Xiong, Y.; Luo, Y.; Li, H.; Wu, W.; Ruan, X.; Mu, X. Int. J. Infect. Dis. 2020, 95, 406.
doi: 10.1016/j.ijid.2020.03.075 |
[43] |
Singh, R. K.; Dhama, K.; Karthik, K.; Tiwari, R.; Khandia, R.; Munjal, A.; Iqbal, H. M. N.; Malik, Y. S.; Bueno Mari, R. Front. Microbiol. 2017, 8, 2677.
doi: 10.3389/fmicb.2017.02677 |
[44] |
Sasmono, R. T.; Santoso, M. S.; Pamai, Y. W. B.; Yohan, B.; Afida, A. M.; Denis, D.; Hutagalung, I. A.; Johar, E.; Hayati, R. F.; Yudhaputri, F. A.; Haryanto, S.; Stubbs, S. C. B.; Blacklaws, B. A.; Myint, K. S. A.; Frost, S. D. W. Front. Med. 2020, 7, 582235.
doi: 10.3389/fmed.2020.582235 |
[45] |
Walper, S. A.; Lasarte Aragones, G.; Sapsford, K. E.; Brown, C. W.,3rd; Rowland, C. E.; Breger, J. C.; Medintz, I. L.; ACS Sensors 2018, 3, 1894.
doi: 10.1021/acssensors.8b00420 |
[46] |
Goud, K. Y.; Reddy, K. K.; Khorshed, A.; Kumar, V. S.; Mishra, R. K.; Oraby, M.; Ibrahim, A. H.; Kim, H.; Gobi, K. V. Biosens. Bioelectron. 2021, 180, 113112.
doi: 10.1016/j.bios.2021.113112 |
[47] |
Sasmono, R. T.; Aryati, A.; Wardhani, P.; Yohan, B.; Trimarsanto, H.; Fahri, S.; Setianingsih, T. Y.; Meutiawati, F. PLoS One 2014, 9, e103815.
doi: 10.1371/journal.pone.0103815 |
[48] |
Lopez-Jimena, B.; Bekaert, M.; Bakheit, M.; Frischmann, S.; Patel, P.; Simon Loriere, E.; Lambrechts, L.; Duong, V.; Dussart, P.; Harold, G.; Fall, C.; Faye, O.; Sall, A. A.; Weidmann, M. PLoS Negl. Trop. Dis. 2018, 12, e0006381.
doi: 10.1371/journal.pntd.0006381 |
[49] |
Teoh, B. T.; Sam, S. S.; Tan, K. K.; Danlami, M. B.; Shu, M. H.; Johari, J.; Hooi, P. S.; Brooks, D.; Piepenburg, O.; Nentwich, O.; Wilder Smith, A.; Franco, L.; Tenorio, A.; Abubakar, S. J. Clin. Microbiol. 2015, 53, 830.
doi: 10.1128/JCM.02648-14 |
[50] |
Xi, Y.; Xu, C. Z.; Xie, Z. Z.; Zhu, D. L.; Dong, J. M. Mol. Cell. Probe. 2019, 46, 101413.
doi: 10.1016/j.mcp.2019.06.003 |
[51] |
Darwish, N. T.; Alrawi, A. H.; Sekaran, S. D.; Alias, Y.; Khor, S. M. J. Electrochem. Soc. 2016, 163, B19.
doi: 10.1149/2.0471603jes |
[52] |
Gao, M.; Waggoner, J. J.; Hecht, S. M.; Chen, S. ACS Infect. Dis. 2019, 5, 1907.
doi: 10.1021/acsinfecdis.9b00241 |
[53] |
Romano, S.; Lamberti, A.; Masullo, M.; Penzo, E.; Cabrini, S.; Rendina, I.; Mocella, V. Materials 2018, 11, 526.
doi: 10.3390/ma11040526 |
[54] |
Kravtsov, V.; Khestanova, E.; Benimetskiy, F. A.; Ivanova, T.; Samusev, A. K.; Sinev, I. S.; Pidgayko, D.; Mozharov, A. M.; Mukhin, I. S.; Lozhkin, M. S.; Kapitonov, Y. V.; Brichkin, A. S.; Kulakovskii, V. D.; Shelykh, I. A.; Tartakovskii, A. I.; Walker, P. M.; Skolnick, M. S.; Krizhanovskii, D. N.; Iorsh, I. V. Light Sci. Appl. 2020, 9, 56.
doi: 10.1038/s41377-020-0286-z |
[55] |
Eivazzadeh Keihan, R.; Pashazadeh Panahi, P.; Baradaran, B.; De La Guardia, M.; Hejazi, M.; Sohrabi, H.; Mokhtarzadeh, A.; Maleki, A. Trend. Anal. Chem. 2018, 103, 184.
doi: 10.1016/j.trac.2018.03.019 |
[56] |
Hao, N.; Pei, Z.; Liu, P.; Bachman, H.; Naquin, T. D.; Zhang, P.; Zhang, J.; Shen, L.; Yang, S.; Yang, K.; Zhao, S.; Huang, T. J. Small Methods 2020, 16, e2005179.
|
[57] |
Zhou, H.; Liu, J.; Xu, J. J.; Zhang, S. S.; Chen, H. Y. Chem. Soc. Rev. 2018, 47, 1996.
doi: 10.1039/C7CS00573C |
[58] |
Mustapha Kamil, Y.; Abu Bakar, M. H.; Mustapa, M. A.; Yaacob, M. H.; Abidin, N. H. Z.; Syahir, A.; Lee, H. J.; Mahdi, M. A. Sens. Actuators B Chem. 2018, 257, 820.
doi: 10.1016/j.snb.2017.11.005 |
[59] |
Vinayagam, S.; Rajaiah, P.; Mukherjee, A.; Natarajan, C. Spectrochim. Acta A 2018, 202, 346.
doi: 10.1016/j.saa.2018.05.047 |
[60] |
Adegoke, O.; Park, E. Y. J. Mater. Chem. B 2017, 5, 3047.
doi: 10.1039/C7TB00388A |
[61] |
Mazlan, N. F.; Tan, L. L.; Karim, N. H. A.; Heng, L. Y.; Reza, M. I. H. Sens. Actuators B Chem. 2017, 242, 176.
doi: 10.1016/j.snb.2016.11.032 |
[62] |
Loureiro, F. C. C. L.; Neff, H.; Melcher, E. U. K.; Roque, R. A.; De Figueiredo, R. M. P.; Thirstrup, C.; Borre, M. B.; Lima, A. M. N. Sens. Bio-Sens. Res. 2017, 13, 96.
|
[63] |
Wong, W. R.; Sekaran, S. D.; Mahamd Adikan, F. R.; Berini, P. Biosens. Bioelectron. 2016, 78, 132.
doi: 10.1016/j.bios.2015.11.030 |
[64] |
Omar, N. A. S.; Fen, Y. W.; Abdullah, J.; Sadrolhosseini, A. R.; Mustapha Kamil, Y.; Fauzi, N. M.; Hashim, H. S.; Mahdi, M. A. Nanomaterials 2020, 10, 569.
doi: 10.3390/nano10030569 |
[65] |
Jeningsih
doi: 10.3390/s20071820 |
[66] |
Tian, B.; Fock, J.; Minero, G. A. S.; Hansen, M. F. Biosens. Bioelectron. 2020, 160, 112219.
doi: 10.1016/j.bios.2020.112219 |
[67] |
Gahlaut, S. K.; Savargaonkar, D.; Sharan, C.; Yadav, S.; Mishra, P.; Singh, J. P. Anal. Chem. 2020, 92, 2527.
doi: 10.1021/acs.analchem.9b04129 |
[68] |
Sanchez-Purra, M.; Carre-Camps, M.; De Puig, H.; Bosch, I.; Gehrke, L.; Hamad-Schifferli, K. ACS Infect. Dis. 2017, 3, 767.
doi: 10.1021/acsinfecdis.7b00110 |
[69] |
Song, C.; Zhang, J.; Liu, Y.; Guo, X.; Guo, Y.; Jiang, X.; Wang, L. Sens. Actuators B Chem. 2020, 325, 128970.
doi: 10.1016/j.snb.2020.128970 |
[70] |
Omar, N. A. S.; Fen, Y. W.; Ramli, I.; Sadrolhosseini, A. R.; Abdullah, J.; Yusof, N. A.; Kamil, Y. M.; Mahdi, M. A. Polymers 2021, 13, 762.
doi: 10.3390/polym13050762 |
[71] |
Santos, A.; Bueno, P. R.; Davis, J. J. Biosens. Bioelectron. 2018, 100, 519.
doi: 10.1016/j.bios.2017.09.014 |
[72] |
Brazaca, L. C.; Dos Santos, P. L.; De Oliveira, P. R.; Rocha, D. P.; Stefano, J. S.; Kalinke, C.; Abarza Munoz, R. A.; Bonacin, J. A.; Janegitz, B. C.; Carrilho, E. Anal. Chim. Acta 2021, 1159, 338384.
doi: 10.1016/j.aca.2021.338384 |
[73] |
Huang, M. C. Y.; Mateus, C. F. R.; Foley, J. E.; Beatty, R.; Cunningham, B. T.; Chang-Hasnain, C. J. IEEE Photon. Technol. Lett. 2008, 20, 443.
doi: 10.1109/LPT.2008.916947 |
[74] |
Carrillo, C.; Werbajh, S.; Malnero, C.; Stolowicz, F.; Larocca, L.; Malirat, V.; Vojnov, A. Int. J. Infect. Dis. 2018, 73, 171.
|
[75] |
Rahman, S. A.; Saadun, R.; Azmi, N. E.; Ariffin, N.; Abdullah, J.; Yusof, N. A.; Sidek, H.; Hajian, R. J. Nanomater. 2014, 2014, 839286.
|
[76] |
Ferraz, F. O.; Quaresma Bomfim, M. R.; Totola, A. H.; Avila, T. V.; Cisalpino, D.; Marques Pessanha, J. E.; De Souza, D. d. G.; Teixeira Junior, A. L.; Nogueira, M. L.; Bruna Romero, O.; Teixeira, M. M. J. Clin. Virol. 2013, 58, 41.
doi: 10.1016/j.jcv.2013.06.015 |
[77] |
Pal, S.; Dauner, A. L.; Mitra, I.; Forshey, B. M.; Garcia, P.; Morrison, A. C.; Halsey, E. S.; Kochel, T. J.; Wu, S. J. PLoS One 2014, 9, e113411.
doi: 10.1371/journal.pone.0113411 |
[78] |
Sanchez Vargas, L. A.; Sanchez Marce, E. E.; Vivanco Cid, H. Diagn. Micr. Infect. Dis. 2014, 78, 368.
|
[79] |
Fu, C.; Gu, Y.; Wu, Z.; Wang, Y.; Xu, S.; Xu, W. Sens. Actuators B Chem. 2014, 201, 173.
doi: 10.1016/j.snb.2014.04.091 |
[80] |
Dinish, U. S.; Balasundaram, G.; Chang, Y. T.; Olivo, M. Sci. Rep. 2015, 4, 4075.
doi: 10.1038/srep04075 |
[81] |
Xia, X.; Li, W.; Zhang, Y.; Xia, Y. Interface Focus 2013, 3, 20120092.
doi: 10.1098/rsfs.2012.0092 |
[82] |
Ngo, H. T.; Wang, H. N.; Fales, A. M.; Nicholson, B. P.; Woods, C. W.; Vo-Dinh, T. Analyst 2014, 139, 5655.
doi: 10.1039/C4AN01077A |
[83] |
Mohammadzadeh Asl, S.; Keshtkar, A.; Ezzati Nazhad Dolatabadi, J.; De La Guardia, M. Biosens. Bioelectron. 2018, 110, 118.
doi: 10.1016/j.bios.2018.03.051 |
[84] |
Hage, D. S. Clin. Chem. 2018, 64, 991.
doi: 10.1373/clinchem.2017.282699 |
[85] |
Hu, D.; Fry, S. R.; Huang, J. X.; Ding, X.; Qiu, L.; Pan, Y.; Chen, Y.; Jin, J.; McElnea, C.; Buechler, J.; Che, X.; Cooper, M. A. Biosensors 2013, 3, 297.
|
[86] |
Jahanshahi, P.; Sekaran, S. D.; Adikan, F. R. M. Med. Biol. Eng. Comput. 2015, 53, 679.
doi: 10.1007/s11517-015-1262-2 |
[87] |
Oliveira, N.; Souza, E.; Ferreira, D.; Zanforlin, D.; Bezerra, W.; Borba, M. A.; Arruda, M.; Lopes, K.; Nascimento, G.; Martins, D.; Cordeiro, M.; Lima-Filho, J. Sensors 2015, 15, 15562.
doi: 10.3390/s150715562 |
[88] |
Chan, S. K.; Choong, Y. S.; Perera, D.; Lim, T. S. Anal. Methods 2018, 10, 214.
doi: 10.1039/C7AY02131C |
[89] |
Shen, W.; Gao, Z. Biosens. Bioelectron. 2015, 65, 327.
doi: 10.1016/j.bios.2014.10.060 |
[90] |
Chowdhury, A. D.; Ganganboina, A. B.; Nasrin, F.; Takemura, K.; Doong, R. a.; Utomo, D. I. S.; Lee, J.; Khoris, I. M.; Park, E. Y. Anal. Chem. 2018, 90, 12464.
doi: 10.1021/acs.analchem.8b01802 |
[91] |
Hsieh, M. S.; Chen, M. Y.; Hsieh, C. H.; Pan, C. H.; Yu, G. Y.; Chen, H. W. PLoS One 2017, 12, e0188170.
doi: 10.1371/journal.pone.0188170 |
[92] |
Xie, B. P.; Qiu, G. H.; Hu, P. P.; Liang, Z.; Liang, Y. M.; Sun, B.; Bai, L. P.; Jiang, Z. H.; Chen, J. X. Sens. Actuators B Chem. 2018, 254, 1133.
doi: 10.1016/j.snb.2017.06.085 |
[93] |
He, Z.; Wu, J.; Qiao, B.; Pei, H.; Xia, Q.; Wu, Q.; Ju, H. ACS Appl. Bio Mater. 2020, 3, 5342.
doi: 10.1021/acsabm.0c00658 |
[94] |
Dias, A. C. M. S.; Gomes Filho, S. L. R.; Silva, M. M. S.; Dutra, R. F. Biosens. Bioelectron. 2013, 44, 216.
doi: 10.1016/j.bios.2012.12.033 |
[95] |
Silva, M. M. S.; Dias, A. C. M. S.; Silva, B. V. M.; Gomes-Filho, S. L. R.; Kubota, L. T.; Goulart, M. O. F.; Dutra, R. F. J. Chem. Technol. Biot. 2015, 90, 194.
|
[96] |
Cavalcanti, I. T.; Guedes, M. I. F.; Sotomayor, M. D. P. T.; Yamanaka, H.; Dutra, R. F. Biochem. Eng. J. 2012, 67, 225.
doi: 10.1016/j.bej.2012.06.016 |
[97] |
Cheng, M. S.; Ho, J. S.; Tan, C. H.; Wong, J. P.; Ng, L. C.; Toh, C. S. Anal. Chim. Acta 2012, 725, 74.
doi: 10.1016/j.aca.2012.03.017 |
[98] |
Souza, E.; Nascimento, G.; Santana, N.; Ferreira, D.; Lima, M.; Natividade, E.; Martins, D.; Lima-Filho, J. Sensors 2011, 11, 5616.
doi: 10.3390/s110605616 |
[99] |
Rai, V.; Hapuarachchi, H. C.; Ng, L. C.; Soh, S. H.; Leo, Y. S.; Toh, C. S. PLoS One 2012, 7, e42346.
doi: 10.1371/journal.pone.0042346 |
[100] |
Singhal, C.; Pundir, C. S.; Narang, J. Biosens. Bioelectron. 2017, 97, 75.
doi: 10.1016/j.bios.2017.05.047 |
[101] |
Tripathy, S.; Krishna Vanjari, S. R.; Singh, V.; Swaminathan, S.; Singh, S. G. Biosens. Bioelectron. 2017, 90, 378.
doi: 10.1016/j.bios.2016.12.008 |
[102] |
Silva, M. M.; Dias, A. C.; Cordeiro, M. T.; Marques, E.,Jr.; Goulart, M. O.; Dutra, R. F.; Talanta 2014, 128, 505.
doi: 10.1016/j.talanta.2014.06.009 |
[103] |
Figueiredo, A.; Vieira, N. C.; Dos Santos, J. F.; Janegitz, B. C.; Aoki, S. M.; Junior, P. P.; Lovato, R. L.; Nogueira, M. L.; Zucolotto, V.; Guimaraes, F. E. Sci. Rep. 2015, 5, 7865.
doi: 10.1038/srep07865 |
[104] |
Cecchetto, J.; Carvalho, F. C.; Santos, A.; Fernandes, F. C. B.; Bueno, P. R. Sens. Actuators B Chem. 2015, 213, 150.
doi: 10.1016/j.snb.2015.02.068 |
[105] |
Luna, D. M.; Oliveira, M. D.; Nogueira, M. L.; Andrade, C. A. Chem. Phys. Lipids 2014, 180, 7.
doi: 10.1016/j.chemphyslip.2014.02.008 |
[106] |
Oliveira, M. D.; Correia, M. T.; Diniz, F. B. Biosens. Bioelectron. 2009, 25, 728.
doi: 10.1016/j.bios.2009.08.009 |
[107] |
Oliveira, M. D. L.; Nogueira, M. L.; Correia, M. T. S.; Coelho, L. C. B. B.; Andrade, C. A. S. Sens. Actuators B Chem. 2011, 155, 789.
doi: 10.1016/j.snb.2011.01.049 |
[108] |
Avelino, K. Y. P. S.; Andrade, C. A. S.; De Melo, C. P.; Nogueira, M. L.; Correia, M. T. S.; Coelho, L. C. B. B.; Oliveira, M. D. L. Synthetic Met. 2014, 194, 102.
doi: 10.1016/j.synthmet.2014.05.001 |
[109] |
Andrade, C. A.; Oliveira, M. D.; De Melo, C. P.; Coelho, L. C.; Correia, M. T.; Nogueira, M. L.; Singh, P. R.; Zeng, X. J. Colloid Interf. Sci. 2011, 362, 517.
doi: 10.1016/j.jcis.2011.07.013 |
[110] |
Palomar, Q.; Gondran, C.; Marks, R.; Cosnier, S.; Holzinger, M. Electrochim. Acta 2018, 274, 84.
doi: 10.1016/j.electacta.2018.04.099 |
[111] |
Luna, D. M. N.; Avelino, K. Y. P. S.; Cordeiro, M. T.; Andrade, C. A. S.; Oliveira, M. D. L. Sens. Actuators B Chem. 2015, 220, 565.
doi: 10.1016/j.snb.2015.05.067 |
[112] |
Navakul, K.; Warakulwit, C.; Yenchitsomanus, P. T.; Panya, A.; Lieberzeit, P. A.; Sangma, C. Nanomedicine 2017, 13, 549.
|
[113] |
Deng, J.; Toh, C. S. Sensors 2013, 13, 7774.
doi: 10.3390/s130607774 |
[114] |
Jin, S. A.; Poudyal, S.; Marinero, E. E.; Kuhn, R. J.; Stanciu, L. A. Electrochim. Acta 2016, 194, 422.
doi: 10.1016/j.electacta.2016.02.116 |
[115] |
Goode, J. A.; Rushworth, J. V.; Millner, P. A. Langmuir 2015, 31, 6267.
doi: 10.1021/la503533g |
[116] |
Janegitz, B. C.; Silva, T. A.; Wong, A.; Ribovski, L.; Vicentini, F. C.; Taboada Sotomayor, M. D. P.; Fatibello Filho, O. Biosens. Bioelectron. 2017, 89, 224.
doi: 10.1016/j.bios.2016.03.026 |
[117] |
Oztekin, Y.; Ramanaviciene, A.; Yazicigil, Z.; Solak, A. O.; Ramanavicius, A. Biosens. Bioelectron. 2011, 26, 2541.
doi: 10.1016/j.bios.2010.11.001 |
[118] |
Sinawang, P. D.; Rai, V.; Ionescu, R. E.; Marks, R. S. Biosens. Bioelectron. 2016, 77, 400.
doi: 10.1016/j.bios.2015.09.048 |
[119] |
Nuzaihan, M. N. M.; Hashim, U.; Md Arshad, M. K.; Kasjoo, S. R.; Rahman, S. F.; Ruslinda, A. R.; Fathil, M. F.; Adzhri, R.; Shahimin, M. M. Biosens. Bioelectron. 2016, 83, 106.
doi: 10.1016/j.bios.2016.04.033 |
[120] |
Anusha, J. R.; Fleming, A. T.; Kim, H. J.; Kim, B. C.; Yu, K. H.; Raj, C. J. Bioelectrochemistry 2015, 104, 44.
doi: 10.1016/j.bioelechem.2015.02.004 |
[121] |
Krikstolaityte, V.; Kuliesius, J.; Ramanaviciene, A.; Mikoliunaite, L.; Kausaite Minkstimiene, A.; Oztekin, Y.; Ramanavicius, A. Polymer 2014, 55, 1613.
doi: 10.1016/j.polymer.2014.02.003 |
[122] |
Bazin, I.; Tria, S. A.; Hayat, A.; Marty, J. L. Biosens. Bioelectron. 2017, 87, 285.
doi: 10.1016/j.bios.2016.06.083 |
[123] |
Zhang, S.; Geryak, R.; Geldmeier, J.; Kim, S.; Tsukruk, V. V. Chem. Rev. 2017, 117, 12942.
doi: 10.1021/acs.chemrev.7b00088 |
[124] |
Basso, C. R.; Tozato, C. C.; Crulhas, B. P.; Castro, G. R.; Junior, J. P. A.; Pedrosa, V. A. J. Virol. 2018, 513, 85.
|
[125] |
Hasanzadeh, M.; Karimzadeh, A.; Sadeghi, S.; Mokhtarzadeh, A.; Shadjou, N.; Jouyban, A. J. Mater. Sci. Mater. Electron. 2016, 27, 6488.
doi: 10.1007/s10854-016-4590-6 |
[126] |
Vermisoglou, E.; Panacek, D.; Jayaramulu, K.; Pykal, M.; Frebort, I.; Kolar, M.; Hajduch, M.; Zboril, R.; Otyepka, M. Biosens. Bioelectron. 2020, 166, 112436.
doi: 10.1016/j.bios.2020.112436 |
[127] |
Zhang, W.; Xiao, G.; Chen, J.; Wang, L.; Hu, Q.; Wu, J.; Zhang, W.; Song, M.; Qiao, J.; Xu, C. Anal. Bioanal. Chem. 2021, 413, 2407.
doi: 10.1007/s00216-021-03197-8 |
[128] |
Choi, Y.; Hwang, J. H.; Lee, S. Y. Small Methods 2018, 2, 1700351.
doi: 10.1002/smtd.v2.4 |
[129] |
Rashid, J. I.; Yusof, N. A.; Abdullah, J.; Hashim, U.; Hajian, R. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 270.
doi: 10.1016/j.msec.2014.09.010 |
[130] |
Zhang, L.; Gu, C.; Wen, J.; Liu, G.; Liu, H.; Li, L. Anal. Bioanal. Chem. 2021, 413, 83.
doi: 10.1007/s00216-020-03000-0 |
[131] |
Fu, J.; Wu, J.; Zhang, R.; Wu, Q.; Ju, H. Sens. Actuators B Chem. 2021, 345, 130436.
doi: 10.1016/j.snb.2021.130436 |
[132] |
Sinawang, P. D.; Fajs, L.; Elouarzaki, K.; Nugraha, J.; Marks, R. S. Sens. Actuators B Chem. 2018, 259, 354.
doi: 10.1016/j.snb.2017.12.043 |
[133] |
Lim, J. M.; Kim, J. H.; Ryu, M. Y.; Cho, C. H.; Park, T. J.; Park, J. P. Anal. Chim. Acta 2018, 1026, 109.
doi: 10.1016/j.aca.2018.04.005 |
[134] |
Palomar, Q.; Xu, X.; Gondran, C.; Holzinger, M.; Cosnier, S.; Zhang, Z. Mikrochim. Acta 2020, 187, 363.
doi: 10.1007/s00604-020-04339-y |
[135] |
Cecchetto, J.; Santos, A.; Mondini, A.; Cilli, E. M.; Bueno, P. R. Biosens. Bioelectron. 2020, 151, 111972.
doi: 10.1016/j.bios.2019.111972 |
[136] |
Khristunova, E.; Dorozhko, E.; Korotkova, E.; Kratochvil, B.; Vyskocil, V.; Barek, J. Sensors 2020, 20, 4600.
doi: 10.3390/s20164600 |
[137] |
Nascimento, H. P.; Oliveira, M. D.; De Melo, C. P.; Silva, G. J.; Cordeiro, M. T.; Andrade, C. A. Colloids Surf. B 2011, 86, 414.
doi: 10.1016/j.colsurfb.2011.04.028 |
[138] |
Solanki, S.; Soni, A.; Pandey, M. K.; Biradar, A.; Sumana, G. ACS Appl. Mater. Inter. 2018, 10, 3020.
doi: 10.1021/acsami.7b14391 |
[139] |
Wasik, D.; Mulchandani, A.; Yates, M. V. Sensors 2018, 18, 2641.
doi: 10.3390/s18082641 |
[140] |
Senapati, S.; Slouka, Z.; Shah, S. S.; Behura, S. K.; Shi, Z.; Stack, M. S.; Severson, D. W.; Chang, H. C. Biosens. Bioelectron. 2014, 60, 92.
doi: 10.1016/j.bios.2014.04.008 |
[1] | Lanying Li, Qing Tao, Yanli Wen, Lele Wang, Ruiyan Guo, Gang Liu, Xiaolei Zuo. Poly-adenine-based DNA Probes and Their Applications in Biosensors★ [J]. Acta Chimica Sinica, 2023, 81(6): 681-690. |
[2] | Ziyu Zhu, Axin Liang, Ruilin Haotian, Shanshan Tang, Miao Liu, Bingteng Xie, Aiqin Luo. Application of Biosensors in the Detection of SARS-CoV-2 [J]. Acta Chimica Sinica, 2023, 81(3): 253-263. |
[3] | Ruilin Haotian, Ziyu Zhu, Yanhui Cai, Wei Wang, Zhen Wang, Axin Liang, Aiqin Luo. Application of Covalent Organic Framework-Based Electrochemical Biosensors in Biological Sample Detection [J]. Acta Chimica Sinica, 2022, 80(11): 1524-1535. |
[4] | Ni Liao, Xia Zhong, Wen-Bin Liang, Ruo Yuan, Ying Zhuo. Metal-organic Frameworks (MOF)-based Novel Electrochemiluminescence Biosensing Platform for Quantification of H2O2 Releasing from Tumor Cells [J]. Acta Chimica Sinica, 2021, 79(10): 1257-1264. |
[5] | Jin Xin, Wang XiaoYing. Progress in Analysis and Detection of Salivary Tumor Biomarkers Associated with Oral Cancer [J]. Acta Chim. Sinica, 2019, 77(4): 340-350. |
[6] | Hu Zhengli, Du Jihui, Ying Yilun, Peng Yueyi, Cao Chan, Long Yi-Tao. Single-Molecule Analysis of Colorectal Cancer-associated MicroRNAs via a Biological Nanopore [J]. Acta Chim. Sinica, 2017, 75(11): 1087-1090. |
[7] | Wang Qin, Nie Zhou, Hu Yufang, Yao Shouzhuo. Electrochemical Assay for Acetylcholinesterase Activity Detection Based on Unique Electro-catalytic Activity of Cu(II)-thiol Coordination Polymer [J]. Acta Chim. Sinica, 2017, 75(11): 1109-1114. |
[8] | Liu Xingfen, Wang Yateng, Huang Yanqin, Feng Xiaomiao, Fan Quli, Huang Wei. Highly Sensitive Protein Biosensor based on a Conjugated Polymer Brush [J]. Acta Chim. Sinica, 2016, 74(8): 664-668. |
[9] | Li Laicai, Zhang Ming, Mao Shuang, Yang Chun, Tian Anmin. Theoretical Investigation on the Adsorption of DNA Bases on B-doped SWCNT Surface [J]. Acta Chimica Sinica, 2015, 73(2): 143-150. |
[10] | Zhang Jiajia, Dai Peiqing, Li Chao, Li Nanwang, Cheng Guifang, He Pingang, Fang Yuzhi. A Symmetrically Split G-quadruplex DNAzymes Biosensor Based on Magnetic Nanoparticles for the Rapid Detection of Hg2+ [J]. Acta Chimica Sinica, 2014, 72(9): 1029-1035. |
[11] | Wu Chao, Yang Shengyuan, Wu Zhaoyang, Shen Guoli, Yu Ruqin. Split Aptamer-Based Liquid Crystal Biosensor for ATP Assay [J]. Acta Chimica Sinica, 2013, 71(03): 367-370. |
[12] | Wu Xingyi, Zhang Lei, Lü Dan, Liu Yanhua, Chen Yanan, Su Weijun, Luo Na, Xiang Rong. Application of Surface Plasmon Resonance Sensors in the Early Diagnosis of Cancer [J]. Acta Chimica Sinica, 2013, 71(03): 299-301. |
[13] | Yang Shaoming, Zha Wenling, Li Hong, Sun Qing, Zheng Longzhen. Study of Label-free Bi-analyte Detection Aptamer Biosensor [J]. Acta Chimica Sinica, 2013, 71(03): 451-456. |
[14] | Xia Qianfang, Luo Dan, Li Zaijun. Electrochemical Fabrication and Application of the Glucose Biosensor Based on Graphene [J]. Acta Chimica Sinica, 2012, 70(19): 2079-2084. |
[15] | Wang Qing, Zhu Hongzhi, Yang Xiaohai, Wang Kemin, Yang Lijuan, Ding Jing. High Sensitive Coralyne Detection by Using of Au Nanoparticles-Enhanced Surface Plasmon Resonance Biosensor [J]. Acta Chimica Sinica, 2012, 70(13): 1483-1487. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||