Acta Chimica Sinica ›› 2022, Vol. 80 ›› Issue (6): 827-838.DOI: 10.6023/A21120607 Previous Articles Next Articles
Special Issue: 中国科学院青年创新促进会合辑
Review
投稿日期:
2021-12-30
发布日期:
2022-07-07
通讯作者:
章福祥
作者简介:
祁育, 副研究员, 硕导, 2012年本科毕业于吉林大学, 随后加入中国科学院大连化学物理研究所, 在李灿院士和章福祥研究员指导下获得博士学位. 2018年1月加入章福祥课题组, 主要研究方向为光催化Z机制全分解水制氢研究. |
章福祥, 研究员, 博导, 国家杰出青年基金获得者, 英国皇家化学会会士, 入选国家百千万人才工程. 1999年获南开大学学士学位, 2004年获南开大学理学博士学位, 同年留校任教至2007年8月, 2007 年9月至2008年6月获法国CNRS博士后基金支持于巴黎第六大学做访问学者, 2008年7月至2011年9月在东京大学做博士后和特任助理教授, 2011年10月至今在中国科学院大连化学物理研究所工作. 目前主要从事宽光谱捕光催化剂全分解水制氢和太阳能光化学转化研究, 研究内容涉及宽光谱捕光光催化材料设计合成, 高效光生电荷分离体系构建以及光催化表面/界面反应机制等方面. 已在包括Nat. Commun., Nature Catal., Joule, J. Am. Chem. Soc., Angew. Chem. Int. Ed., Adv. Mater.等刊物上发表SCI/EI学术论文百余篇. 担任J. Energy Chem.期刊副主编, Sci. China Chem., eScience, Renewable, NSR和化学进展等期刊编委; 可再生能源学会光化学与光催化专业委员会委员, 全国催化青年专业委员会委员, 能源与环境专业委员会委员; 正主持承担国家自然科学基金委重点项目, 国家自然科学基金杰出青年基金项目, 科技部重点专项等. |
基金资助:
Received:
2021-12-30
Published:
2022-07-07
Contact:
Fuxiang Zhang
About author:
Supported by:
Share
Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※[J]. Acta Chimica Sinica, 2022, 80(6): 827-838.
[1] |
Şen, Z. Energy Combust. Sci. 2004, 30, 367.
doi: 10.1016/j.pecs.2004.02.004 |
[2] |
Momirlan, M.; Veziroglu, T. N. Int. Hydrog. Energy. 2005, 30, 795.
doi: 10.1016/j.ijhydene.2004.10.011 |
[3] |
Hisatomi, T.; Domen, K. Faraday Discuss. 2017, 198, 11.
doi: 10.1039/c6fd00221h pmid: 28272623 |
[4] |
Chen, S.; Takata, T.; Domen, K. Nat. Rev. Mater. 2017, 2, 17050.
doi: 10.1038/natrevmats.2017.50 |
[5] |
Hisatomi, T.; Domen, K. Nat. Catal. 2019, 2, 387.
doi: 10.1038/s41929-019-0242-6 |
[6] |
Fujishima, A.; Honda, K. Nature 1972, 238, 37.
doi: 10.1038/238037a0 |
[7] |
Kudo, A.; Miseki, Y. Chem. Soc. Rev. 2009, 38, 253.
doi: 10.1039/B800489G |
[8] |
Maeda, K.; Domen, K. J. Phys. Chem. C. 2007, 111, 7851.
doi: 10.1021/jp070911w |
[9] |
Yang, J.; Wang, D.; Han, H.; Li, C. Acc. Chem. Res. 2013, 46, 1900.
doi: 10.1021/ar300227e |
[10] |
Wang, Q.; Domen, K. Chem. Rev. 2020, 120, 919.
doi: 10.1021/acs.chemrev.9b00201 |
[11] |
Maeda, K. J. Photochem. Photobiol. C: Photochem. Rev. 2011, 12, 237.
doi: 10.1016/j.jphotochemrev.2011.07.001 |
[12] |
Hisatomi, T.; Minegishi, T.; Domen, K. Bull. Chem. Soc. Jpn. 2012, 85, 647.
doi: 10.1246/bcsj.20120058 |
[13] |
Hisatomi, T.; Kubota, J.; Domen, K. Chem. Soc. Rev. 2014, 43, 7520.
doi: 10.1039/c3cs60378d pmid: 24413305 |
[14] |
Qureshi, M.; Takanabe, K. Chem. Mater. 2017, 29, 158.
doi: 10.1021/acs.chemmater.6b02907 |
[15] |
Wang, Z.; Li, C.; Domen, K. Chem. Soc. Rev. 2019, 48, 2109.
doi: 10.1039/C8CS00542G |
[16] |
Wang, Z.; Hisatomi, T.; Li, R.; Sayama, K.; Liu, G.; Domen, K.; Li, C.; Wang, L. Joule 2021, 5, 344.
doi: 10.1016/j.joule.2021.01.001 |
[17] |
Cui, J.; Li, C.; Zhang, F. ChemSusChem 2019, 12, 1872.
doi: 10.1002/cssc.201801829 |
[18] |
Chen, X.; Mao, S. S. Chem. Rev. 2007, 107, 2891.
doi: 10.1021/cr0500535 |
[19] |
Grabowska, E. Appl. Catal. B: Environ. 2016, 186, 97.
doi: 10.1016/j.apcatb.2015.12.035 |
[20] |
Ham, Y.; Hisatomi, T.; Goto, Y.; Moriya, Y.; Sakata, Y.; Yamakata, A.; Kubota, J.; Domen, K. J Mater. Chem. A 2016, 4, 3027.
doi: 10.1039/C5TA04843E |
[21] |
Kato, H.; Kudo, A. J Phy. Chem. B 2001, 105, 4285.
doi: 10.1021/jp004386b |
[22] |
Kato, H.; Asakura, K.; Kudo, A. J. Am. Chem. Soc. 2003, 125, 3082.
doi: 10.1021/ja027751g |
[23] |
Kudo, A.; Sayama, K.; Tanaka, A.; Asakura, K.; Domen, K.; Maruya, K.; Onishi, T. J. Catal. 1989, 120, 337.
doi: 10.1016/0021-9517(89)90274-1 |
[24] |
Sato, J.; Saito, N.; Nishiyama, H.; Inoue, Y. J Phy. Chem. B 2003, 107, 7965.
doi: 10.1021/jp030020y |
[25] |
Sato, J.; Kobayashi, H.; Inoue, Y. J Phy. Chem. B 2003, 107, 7970.
doi: 10.1021/jp030021q |
[26] |
Sato, J.; Saito, N.; Yamada, Y.; Maeda, K.; Takata, T.; Kondo, J. N.; Hara, M.; Kobayashi, H.; Domen, K.; Inoue, Y. J. Am. Chem. Soc. 2005, 127, 4150.
doi: 10.1021/ja042973v |
[27] |
Chen, S.; Zhang, F. Chin. J. Catal. 2014, 35, 1431.
doi: 10.1016/S1872-2067(14)60183-2 |
[28] |
Chen, S.; Yang, J.; Ding, C.; Li, R.; Jin, S.; Wang, D.; Han, H.; Zhang, F.; Li, C. J Mater. Chem. A 2013, 1, 5651.
doi: 10.1039/c3ta10446j |
[29] |
Chen, S.; Qi, Y.; Liu, G.; Yang, J.; Zhang, F.; Li, C. Chem. Commun. 2014, 50, 14415.
doi: 10.1039/C4CC06682K |
[30] |
Dong, B.; Cui, J.; Qi, Y.; Zhang, F. Adv. Mater. 2021, 33, 2004697.
doi: 10.1002/adma.202004697 |
[31] |
Fujito, H.; Kunioku, H.; Kato, D.; Suzuki, H.; Higashi, M.; Kageyama, H.; Abe, R. J. Am. Chem. Soc. 2016, 138, 2082.
doi: 10.1021/jacs.5b11191 |
[32] |
Kunioku, H.; Higashi, M.; Tomita, O.; Yabuuchi, M.; Kato, D.; Fujito, H.; Kageyama, H.; Abe, R. J. Mater. Chem. A 2018, 6, 3100.
doi: 10.1039/C7TA08619A |
[33] |
Kudo, A.; Kato, H.; Tsuji, I. Chem. Lett. 2004, 33, 1534.
doi: 10.1246/cl.2004.1534 |
[34] |
Youngblood, W. J.; Lee, S.-H. A.; Maeda, K.; Mallouk, T. E. Acc. Chem. Res. 2009, 42, 1966.
doi: 10.1021/ar9002398 |
[35] |
Houlding, V. H.; Gratzel, M. J. Am. Chem. Soc. 1983, 105, 5695.
doi: 10.1021/ja00355a032 |
[36] |
Youngblood, W. J.; Lee, S.-H. A.; Kobayashi, Y.; Hernandez-Pagan, E. A.; Hoertz, P. G.; Moore, T. A.; Moore, A. L.; Gust, D.; Mallouk, T. E. J. Am. Chem. Soc. 2009, 131, 926.
doi: 10.1021/ja809108y pmid: 19119815 |
[37] |
Yanagida, S.; Kabumoto, A.; Mizumoto, K.; Pac, C.; Yoshino, K. J. Chem. Soc., Chem. Commun. 1985, 474.
|
[38] |
Wang, Y.; Vogel, A.; Sachs, M.; Sprick, R. S.; Wilbraham, L.; Moniz, S. J. A.; Godin, R.; Zwijnenburg, M. A.; Durrant, J. R.; Cooper, A. I.; Tang, J. Nat. Energy 2019, 4, 746.
doi: 10.1038/s41560-019-0456-5 |
[39] |
Zhang, G.; Lan, Z.-A.; Wang, X. Angew. Chem. Int. Ed. 2016, 55, 15712.
doi: 10.1002/anie.201607375 |
[40] |
Wang, X.; Maeda, K.; Thomas, A.; Takanabe, K.; Xin, G.; Carlsson, J. M.; Domen, K.; Antonietti, M. Nat. Mater. 2009, 8, 76.
doi: 10.1038/nmat2317 |
[41] |
Ma, W.; He, Y.; Liu, H. Acta Chim. Sinica 2021, 79, 914. (in Chinese)
doi: 10.6023/A21030121 |
(麻旺坪, 贺彦彦, 刘洪来, 化学学报, 2021, 79, 914.)
doi: 10.6023/A21030121 |
|
[42] |
Lin, L.; Lin, Z.; Zhang, J.; Cai, X.; Lin, W.; Yu, Z.; Wang, X. Nat. Catal. 2020, 3, 649.
doi: 10.1038/s41929-020-0476-3 |
[43] |
Lan, Z.-A.; Wu, M.; Fang, Z.; Zhang, Y.; Chen, X.; Zhang, G.; Wang, X. Angew. Chem., Int. Ed. 2022, DIO: 10. 1002/anie.202201482.
|
[44] |
Meyer, K.; Ranocchiari, M.; van Bokhoven, J. A. Energ. Environ. Sci. 2015, 8, 1923.
doi: 10.1039/C5EE00161G |
[45] |
Shi, Y.; Yang, A.-F.; Cao, C.-S.; Zhao, B. Coord. Chem. Rev. 2019, 390, 50.
doi: 10.1016/j.ccr.2019.03.012 |
[46] |
Guo, X.; Liu, L.; Xiao, Y.; Qi, Y.; Duan, C.; Zhang, F. Coord. Chem. Rev. 2021, 435, 213785.
doi: 10.1016/j.ccr.2021.213785 |
[47] |
Wu, Q.; Zhang, C.; Sun, K.; Jiang, H. Acta Chim. Sinica 2020, 78, 688. (in Chinese)
doi: 10.6023/A20050141 |
(吴浅耶, 张晨曦, 孙康, 江海龙, 化学学报, 2020, 78, 688.)
doi: 10.6023/A20050141 |
|
[48] |
Dhakshinamoorthy, A.; Asiri, A. M.; García, H. Angew. Chem. Int. Ed. 2016, 55, 5414.
doi: 10.1002/anie.201505581 pmid: 26970539 |
[49] |
Xu, M.; Li, D.; Sun, K.; Jiao, L.; Xie, C.; Ding, C.; Jiang, H.-L. Angew. Chem. Int. Ed. 2021, 60, 16372.
doi: 10.1002/anie.202104219 |
[50] |
Hu, H.; Wang, Z.; Cao, L.; Zeng, L.; Zhang, C.; Lin, W.; Wang, C. Nat. Chem. 2021, 13, 358.
doi: 10.1038/s41557-020-00635-5 |
[51] |
Linic, S.; Christopher, P.; Ingram, D. B. Nat. Mater. 2011, 10, 911.
doi: 10.1038/nmat3151 |
[52] |
Dong, H.; Sun, L.-D.; Yan, C.-H. Chem. Soc. Rev. 2015, 44, 1608.
doi: 10.1039/c4cs00188e pmid: 25242465 |
[53] |
Liu, G.; Niu, P.; Yin, L.; Cheng, H.-M. J. Am. Chem. Soc. 2012, 134, 9070.
doi: 10.1021/ja302897b |
[54] |
Rahman, M. Z.; Kwong, C. W.; Davey, K.; Qiao, S. Z. Energy Environ. Sci. 2016, 9, 709.
doi: 10.1039/C5EE03732H |
[55] |
Xu, X.; Randorn, C.; Efstathiou, P.; Irvine, J. T. S. Nat. Mater. 2012, 11, 595.
doi: 10.1038/nmat3312 |
[56] |
Maeda, K. Chem. Commun. 2013, 49, 8404.
doi: 10.1039/c3cc44151b |
[57] |
Maeda, K.; Terashima, H.; Kase, K.; Higashi, M.; Tabata, M.; Domen, K. Bull. Chem. Soc. Jpn. 2008, 81, 927.
doi: 10.1246/bcsj.81.927 |
[58] |
Jang, J. S.; Kim, H. G.; Lee, J. S. Cataly. Today 2012, 185, 270.
doi: 10.1016/j.cattod.2011.07.008 |
[59] |
Xu, Y.; Li, A.; Yao, T.; Ma, C.; Zhang, X.; Shah, J. H.; Han, H. ChemSusChem 2017, 10, 4277.
doi: 10.1002/cssc.201701598 |
[60] |
Chen, S.; Qi, Y.; Hisatomi, T.; Ding, Q.; Asai, T.; Li, Z.; Ma, S. S. K.; Zhang, F.; Domen, K.; Li, C. Angew. Chem. Int. Ed. 2015, 54, 8498.
doi: 10.1002/anie.201502686 |
[61] |
Qi, Y.; Chen, S.; Li, M.; Ding, Q.; Li, Z.; Cui, J.; Dong, B.; Zhang, F.; Li, C. Chem. Sci. 2017, 8, 437.
doi: 10.1039/C6SC02750D |
[62] |
Zhang, J.; Xu, Q.; Feng, Z.; Li, M.; Li, C. Angew. Chem. Int. Ed. 2008, 47, 1766.
doi: 10.1002/anie.200704788 pmid: 18213667 |
[63] |
Wang, X.; Xu, Q.; Li, M.; Shen, S.; Wang, X.; Wang, Y.; Feng, Z.; Shi, J.; Han, H.; Li, C. Angew. Chem. Int. Ed. 2012, 51, 13089.
doi: 10.1002/anie.201207554 |
[64] |
Chen, S.; Shen, S.; Liu, G.; Qi, Y.; Zhang, F.; Li, C. Angew. Chem. Int. Ed. 2015, 54, 3047.
doi: 10.1002/anie.201409906 |
[65] |
Zhang, F.; Yamakata, A.; Maeda, K.; Moriya, Y.; Takata, T.; Kubota, J.; Teshima, K.; Oishi, S.; Domen, K. J. Am. Chem. Soc. 2012, 134, 8348.
doi: 10.1021/ja301726c |
[66] |
Wen, F.; Wang, X.; Huang, L.; Ma, G.; Yang, J.; Li, C. ChemSusChem 2012, 5, 849.
doi: 10.1002/cssc.201200190 |
[67] |
Wen, F.; Yang, J.; Zong, X.; Ma, B.; Wang, D.; Li, C. J. Catal. 2011, 281, 318.
doi: 10.1016/j.jcat.2011.05.015 |
[68] |
Yan, H.; Yang, J.; Ma, G.; Wu, G.; Zong, X.; Lei, Z.; Shi, J.; Li, C. Angew. Chem. Int. Ed. 2009, 266, 165.
|
[69] |
Sakata, Y.; Hayashi, T.; Yasunaga, R.; Yanaga, N.; Imamura, H. Chem. Commun. 2015, 51, 12935.
doi: 10.1039/C5CC03483C |
[70] |
Takata, T.; Jiang, J.; Sakata, Y.; Nakabayashi, M.; Shibata, N.; Nandal, V.; Seki, K.; Hisatomi, T.; Domen, K. Nature 2020, 581, 411.
doi: 10.1038/s41586-020-2278-9 |
[71] |
Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; Narushima, R.; Okunaka, S.; Shibata, N.; Takata, T.; Hisatomi, T.; Domen, K. Nature 2021, 598, 304.
doi: 10.1038/s41586-021-03907-3 |
[72] |
Zou, Z.; Ye, J.; Sayama, K.; Arakawa, H. Nature 2001, 414, 625.
doi: 10.1038/414625a |
[73] |
Pan, C.; Takata, T.; Nakabayashi, M.; Matsumoto, T.; Shibata, N.; Ikuhara, Y.; Domen, K. Angew. Chem. Int. Ed. 2015, 54, 2955.
doi: 10.1002/anie.201410961 |
[74] |
Maeda, K.; Teramura, K.; Lu, D.; Takata, T.; Saito, N.; Inoue, Y.; Domen, K. Nature 2006, 440, 295.
doi: 10.1038/440295a |
[75] |
Bard, A. J. J. Photochem. 1979, 10, 59.
doi: 10.1016/0047-2670(79)80037-4 |
[76] |
Kudo, A. MRS Bulletin 2011, 36, 32.
doi: 10.1557/mrs.2010.3 |
[77] |
Maeda, K. ACS Catal. 2013, 3, 1486.
doi: 10.1021/cs4002089 |
[78] |
Li, H.; Tu, W.; Zhou, Y.; Zou, Z. Adv. Sci. 2016, 3, 1500389.
doi: 10.1002/advs.201500389 |
[79] |
Wang, W.; Chen, J.; Li, C.; Tian, W. Nat. Commun. 2014, 5, 4647.
doi: 10.1038/ncomms5647 |
[80] |
Ma, S. S. K.; Maeda, K.; Abe, R.; Domen, K. Energy Environ. Sci. 2012, 5, 8390.
doi: 10.1039/c2ee21801a |
[81] |
Qi, Y.; Chen, S.; Cui, J.; Wang, Z.; Zhang, F.; Li, C. Appl. Catal. B: Environ. 2018, 224, 579.
doi: 10.1016/j.apcatb.2017.10.041 |
[82] |
Zhou, P.; Yu, J.; Jaroniec, M. Adv. Mater. 2014, 26, 4920.
doi: 10.1002/adma.201400288 |
[83] |
Wang, Q.; Hisatomi, T.; Jia, Q.; Tokudome, H.; Zhong, M.; Wang, C.; Pan, Z.; Takata, T.; Nakabayashi, M.; Shibata, N.; Li, Y.; Sharp, I. D.; Kudo, A.; Yamada, T.; Domen, K. Nat. Mater. 2016, 15, 611.
doi: 10.1038/nmat4589 |
[84] |
Iwase, A.; Yoshino, S.; Takayama, T.; Ng, Y. H.; Amal, R.; Kudo, A. J. Am. Chem. Soc. 2016, 138, 10260.
doi: 10.1021/jacs.6b05304 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[6] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[7] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[8] | Zhenhong Yang, Xiaojuan Gan, Shuzhe Wang, Junyuan Duan, Tianyou Zhai, Youwen Liu. Preparation of Metallic Ni3N Nanoparticles and Its Electrooxidation Performance for Ethylene Glycol★ [J]. Acta Chimica Sinica, 2023, 81(11): 1471-1477. |
[9] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[10] | Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation [J]. Acta Chimica Sinica, 2023, 81(1): 1-5. |
[11] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[12] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[13] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[14] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
[15] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||