Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (1): 1-5.DOI: 10.6023/A22110454 Previous Articles Next Articles
Special Issue: 有机氟化学合集
Communication
杨春晖a, 陈景超a,*(), 李新汉b, 孟丽b, 王凯民b, 孙蔚青b, 樊保敏a,b,*()
投稿日期:
2022-11-09
发布日期:
2023-01-03
基金资助:
Chunhui Yanga, Jingchao Chena(), Xinhan Lib, Li Mengb, Kaimin Wangb, Weiqing Sunb, Baomin Fana,b()
Received:
2022-11-09
Published:
2023-01-03
Contact:
*E-mail: Supported by:
Share
Chunhui Yang, Jingchao Chen, Xinhan Li, Li Meng, Kaimin Wang, Weiqing Sun, Baomin Fan. Difluoroallylation of Silanes under Photoirradiation[J]. Acta Chimica Sinica, 2023, 81(1): 1-5.
Entry | Photocatalyst | Additive | Solvent | Yieldb/% |
---|---|---|---|---|
1 | fac-Ir(ppy)3 | quinuclidine | THF | NR |
2 | Eosin-Y | quinuclidine | THF | NR |
3 | DDQ | quinuclidine | THF | NR |
4 | Riboflavin | quinuclidine | THF | NR |
5 | Acridine Orange | quinuclidine | THF | NR |
6 | Ru(bpy)3Cl2 | quinuclidine | THF | NR |
7 | Methyl Orange | quinuclidine | THF | NR |
8 | 4-CzIPN | quinuclidine | THF | 80 (3aa') |
9 | 4-CzIPN | quinuclidine | MeCN | 85 |
10 | 4-CzIPN | quinuclidine | Toluene | ND |
11 | 4-CzIPN | quinuclidine | DMF | 23 |
12 | 4-CzIPN | quinuclidine | DCE | Trace |
13 | 4-CzIPN | quinuclidine | 1,4-dioxane | 21 |
14 | 4-CzIPN | DABCO | MeCN | NR |
15 | 4-CzIPN | Pyridine | MeCN | NR |
16 | 4-CzIPN | DIPEA | MeCN | NR |
17c | 4-CzIPN | quinuclidine | MeCN | 95 |
18c | — | quinuclidine | MeCN | NR |
19c | 4-CzIPN | — | MeCN | NR |
20c,d | 4-CzIPN | quinuclidine | MeCN | NR |
Entry | Photocatalyst | Additive | Solvent | Yieldb/% |
---|---|---|---|---|
1 | fac-Ir(ppy)3 | quinuclidine | THF | NR |
2 | Eosin-Y | quinuclidine | THF | NR |
3 | DDQ | quinuclidine | THF | NR |
4 | Riboflavin | quinuclidine | THF | NR |
5 | Acridine Orange | quinuclidine | THF | NR |
6 | Ru(bpy)3Cl2 | quinuclidine | THF | NR |
7 | Methyl Orange | quinuclidine | THF | NR |
8 | 4-CzIPN | quinuclidine | THF | 80 (3aa') |
9 | 4-CzIPN | quinuclidine | MeCN | 85 |
10 | 4-CzIPN | quinuclidine | Toluene | ND |
11 | 4-CzIPN | quinuclidine | DMF | 23 |
12 | 4-CzIPN | quinuclidine | DCE | Trace |
13 | 4-CzIPN | quinuclidine | 1,4-dioxane | 21 |
14 | 4-CzIPN | DABCO | MeCN | NR |
15 | 4-CzIPN | Pyridine | MeCN | NR |
16 | 4-CzIPN | DIPEA | MeCN | NR |
17c | 4-CzIPN | quinuclidine | MeCN | 95 |
18c | — | quinuclidine | MeCN | NR |
19c | 4-CzIPN | — | MeCN | NR |
20c,d | 4-CzIPN | quinuclidine | MeCN | NR |
[1] |
Chen, C.-A.; Sieburth, S. M.; Glekas, A.; Hewitt, G. W.; Trainor, G. L.; Erickson-Viitanen, S.; Garber, S. S.; Cordova, B.; Jeffry, S.; Klabe, R. M. Chem. Biol. 2001, 8, 1161.
doi: 10.1016/S1074-5521(01)00079-5 |
[2] |
Mutahi, M. W.; Nittoli, T.; Guo, L.-X.; Sieburth, S. M. J. Am. Chem. Soc. 2002, 124, 7363.
doi: 10.1021/ja026158w |
[3] |
Gately, S.; West, R. Drug Dev. Res. 2007, 68, 156.
doi: 10.1002/ddr.20177 |
[4] |
Franz, A. K.; Wilson, S. O. J. Med. Chem. 2013, 56, 388.
doi: 10.1021/jm3010114 |
[5] |
Tacke, R.; Popp, F.; Müller, B.; Theis, B.; Burschka, C.; Hamacher, A.; Kassack, M. U.; Schepmann, D.; Wünsch, B.; Jurva, U.; Wellner, E. ChemMedChem 2008, 3, 152.
doi: 10.1002/cmdc.200700205 |
[6] |
For reviews and recent examples, see: (a) Wang, D.; Chen, D.-H. Acta Chim. Sinica 1990, 48, 516. (in Chinese)
pmid: 11848898 |
( 王东, 陈德恒, 化学学报, 1990, 48, 516).
pmid: 11848898 |
|
(b) Fleming, I.; Barbero, A.; Walter, D. Chem. Rev. 1997, 97, 2063.
pmid: 11848898 |
|
(c) Hiyama, T. J. Organomet. Chem. 2002, 653, 58.
doi: 10.1016/S0022-328X(02)01157-9 pmid: 11848898 |
|
(d) Chabaud, L.; James, P.; Landais, Y. Eur. J. Org. Chem. 2004, 15, 3173.
pmid: 11848898 |
|
(e) Komiyama, T.; Minami, Y.; Hiyama, T. ACS Catal. 2017, 7, 631.
doi: 10.1021/acscatal.6b02374 pmid: 11848898 |
|
[7] |
For reviews and recent examples, see: (a) Tseng, C.-L.; Zhuo, R.-X.; Liu, J.-W. Acta Chim. Sinica 1964, 30, 360. (in Chinese)
pmid: 18767843 |
( 曾昭抡, 卓仁禧, 刘基万, 化学学报, 1964, 30, 360).
pmid: 18767843 |
|
(b) Chan, T. H.; Wang, D. Chem. Rev. 1995, 95, 1279.
doi: 10.1021/cr00037a007 pmid: 18767843 |
|
(c) Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375.
doi: 10.1021/cr00037a011 pmid: 18767843 |
|
(d) Barbero, A.; Pulido, F. J. Acc. Chem. Res. 2004, 37, 817.
doi: 10.1021/ar0400490 pmid: 18767843 |
|
(e) Nielsen, L.; Skrydstrup, T. J. Am. Chem. Soc. 2008, 130, 13145.
doi: 10.1021/ja804720p pmid: 18767843 |
|
(f) Hu, Y.-Q.; Huang, D.-F.; Wang, K.-H.; Zhao, Z.-X.; Zhao, F.-X.; Xu, W.-G.; Hu, Y.-L. Chin. J. Org. Chem. 2020, 40, 1689. (in Chinese)
doi: 10.6023/cjoc201912006 pmid: 18767843 |
|
虎永琴, 黄丹凤, 王克虎, 赵转霞, 赵芳霞, 徐炜刚, 胡雨来, 有机化学, 2020, 40, 1689).
doi: 10.6023/cjoc201912006 pmid: 18767843 |
|
[8] |
For recent examples, see: (a) Murakami, K.; Yorimitsu, H.; Oshima, K. J. Org. Chem. 2009, 74, 1415.
doi: 10.1021/jo802433t pmid: 31524413 |
(b) Selander, N.; Paasch, J. R.; Szabó, K. J. J. Am. Chem. Soc. 2011, 133, 409.
doi: 10.1021/ja1096732 pmid: 31524413 |
|
(c) Vulovic, B.; Cinderella, A. P.; Watson, D. A. ACS Catal. 2017, 7, 8113.
doi: 10.1021/acscatal.7b03465 pmid: 31524413 |
|
(d) Larsson, J. M.; Szabó, K. J. J. Am. Chem. Soc. 2013, 135, 443.
doi: 10.1021/ja309860h pmid: 31524413 |
|
(e) Gan, Y.; Xu, W.; Liu, Y.-H. Org. Lett. 2019, 21, 9652.
doi: 10.1021/acs.orglett.9b03822 pmid: 31524413 |
|
(f) Yang, B.; Wang, Z.-X. Org. Lett. 2019, 21, 7965.
doi: 10.1021/acs.orglett.9b02946 pmid: 31524413 |
|
[9] |
For recent examples, see: (a) Selander, N.; Paasch, J. R.; Szabó, K. J. J. Am. Chem. Soc. 2011, 133, 409.
doi: 10.1021/ja1096732 pmid: 31742415 |
(b) Larsson, J. M.; Szabó, K. J. J. Am. Chem. Soc. 2013, 135, 443.
doi: 10.1021/ja309860h pmid: 31742415 |
|
(c) Yang, B.; Wang, Z.-X. Org. Lett. 2019, 21, 7965.
doi: 10.1021/acs.orglett.9b02946 pmid: 31742415 |
|
(d) Gan, Y.; Xu, W.; Liu, Y.-H. Org. Lett. 2019, 21, 9652.
doi: 10.1021/acs.orglett.9b03822 pmid: 31742415 |
|
[10] |
For recent examples, see: (a) Ohmura, T.; Taniguchi, H.; Suginome, M. J. Am. Chem. Soc. 2006, 128, 13682.
doi: 10.1021/ja063934h pmid: 27539673 |
(b) Miller, Z. D.; Li, W.; Belderrain, T. R.; Montgomery, J. J. Am. Chem. Soc. 2013, 135, 15282.
doi: 10.1021/ja407749w pmid: 27539673 |
|
(c) Miller, Z. D.; Dorel, R.; Montgomery, J. Angew. Chem. Int. Ed. 2015, 54, 9088.
doi: 10.1002/anie.201503521 pmid: 27539673 |
|
(d) Yeung, K.; Ruscoe, R. E.; Rae, J.; Pulis, A. P.; Procter, D. J. Angew. Chem. Int. Ed. 2016, 55, 11912.
doi: 10.1002/anie.201606710 pmid: 27539673 |
|
(e) Da, B.-C.; Liang, Q.-J.; Luo, Y.-C.; Ahmad, T.; Xu, Y.-H.; Loh, T.-P. ACS Catal. 2018, 8, 6239.
doi: 10.1021/acscatal.8b01547 pmid: 27539673 |
|
(f) Da, B.-C.; Liang, Q.-J.; Luo, Y.-C.; Ahmad, T.; Xu, Y.-H.; Loh, T.-P. ACS Catal. 2018, 8, 6239.
doi: 10.1021/acscatal.8b01547 pmid: 27539673 |
|
(g) Sang, H.-L.; Yu, S.-J.; Ge, S.-Z. Chem. Sci. 2018, 9, 973.
doi: 10.1039/C7SC04002D pmid: 27539673 |
|
(h) Zeng, J.-H.; Chen, J.-J.; Chen, L.; Zhan, Z.-P. Org. Chem. Front. 2020, 7, 1132.
doi: 10.1039/D0QO00156B pmid: 27539673 |
|
(i) Xu, J.-L.; Xu, Z.-Y.; Wang, Z.-L.; Ma, W.-W.; Sun, X.-Y.; Fu, Y.; Xu, Y.-H. J. Am. Chem. Soc. 2022, 144, 5535.
doi: 10.1021/jacs.2c00260 pmid: 27539673 |
|
[11] |
(a) Takeda, M.; Shintani, R.; Hayashi, T. J. Org. Chem. 2013, 78, 5007.
doi: 10.1021/jo400888b pmid: 29202243 |
(b) Xiao, Y.-L.; Pan, Q.; Zhang, X.-G. Acta Chim. Sinica 2015, 73, 383. (in Chinese)
doi: 10.6023/A15010042 pmid: 29202243 |
|
( 肖玉兰, 潘强, 张新刚, 化学学报, 2015, 73, 383).
doi: 10.6023/A15010042 pmid: 29202243 |
|
(c) Mata, S.; López, L. A.; Vicente, R. Angew. Chem. Int. Ed. 2017, 56, 7930.
doi: 10.1002/anie.201703319 pmid: 29202243 |
|
(d) Hofstra, J. L.; Cherney, A. H.; Ordner, C. M.; Reisman, S. E. J. Am. Chem. Soc. 2018, 140, 139.
doi: 10.1021/jacs.7b11707 pmid: 29202243 |
|
(e) Zhao, S.; Li, C.-P.; Xu, B.; Liu, H. Chin. J. Org. Chem. 2020, 40, 1549. (in Chinese)
doi: 10.6023/cjoc202004039 pmid: 29202243 |
|
( 赵森, 李淳朴, 许斌, 柳红, 有机化学, 2020, 40, 1549).
doi: 10.6023/cjoc202004039 pmid: 29202243 |
|
[12] |
(a) Yue, F.-Y.; Liu, J.-H.; Ma, H.-N.; Liu, Y.-X.; Dong, J.-Y.; Wang, Q.-M. Org. Lett. 2022, 24, 4019.
doi: 10.1021/acs.orglett.2c01448 |
(b) Luo, C.; Zhou, Y.; Chen, H.; Wang, T.; Zhang, Z.-B.; Han, P.; Jing, L.-H. Org. Lett. 2022, 24, 4286.
doi: 10.1021/acs.orglett.2c01690 |
|
(c) Xu, W.-G.; Xia, C.-J.; Shao, Q.; Zhang, Q.; Liu, M.-R.; Zhang, H.-W.; Wu, M.-B. Org. Chem. Front. 2022, 9, 4949.
doi: 10.1039/D2QO00894G |
|
[13] |
(a) Zhou, Q.-Q.; Düsel, S. J. S.; Lu, L.-Q.; König, B.; Xiao, W.-J. Chem. Commun. 2019, 55, 107.
doi: 10.1039/C8CC08362B |
(b) Yu, X.-Y.; Chen, J.-R.; Xiao, W.-J. Chem. Rev. 2021, 121, 506.
doi: 10.1021/acs.chemrev.0c00030 |
|
[14] |
(a) Li, K.-K.; Zhang, X.-X.; Chen, J.-C.; Gao, Y.; Yang, C.-H.; Zhang, K.-Y.; Zhou, Y.-Y.; Fan, B.-M. Org. Lett. 2019, 21, 9914.
doi: 10.1021/acs.orglett.9b03855 |
(b) Zhang, X.-X.; Chen, J.-C.; Gao, Y.; Li, K.-K.; Zhou, Y.-Y.; Sun, W.-Q.; Fan, B.-M. Org. Chem. Front. 2019, 6, 2410.
doi: 10.1039/C9QO00231F |
|
(c) Li, K.-K.; Chen, J.-C.; Yang, C.-H.; Zhang, K.-Y.; Pan, C.-X.; Fan, B.-M. Org. Lett. 2020, 22, 4261.
doi: 10.1021/acs.orglett.0c01294 |
|
(d) Lv, H.-P.; Laishram, R. D.; Chen, J.-C.; Khan, R.; Zhu, Y.-B.; Wu, S.-Y.; Zhang, J.-Q.; Liu, X.-Y.; Fan, B.-M. Chem. Commun. 2021, 57, 3660.
doi: 10.1039/D1CC00129A |
|
[15] |
(a) Zhang, X.-H.; MacMillan, D. W. C. J. Am. Chem. Soc. 2017, 139, 11353.
doi: 10.1021/jacs.7b07078 |
(b) Le, C.; Liang, Y.-F.; Evans, R. W.; Li, X.-M.; MacMillan, D. W. C. Nature 2017, 547, 79.
doi: 10.1038/nature22813 |
|
(c) Hou, J.; Ee, A.; Cao, H.; Ong, H.-W.; Xu, J.-H.; Wu, J. Angew. Chem. Int. Ed. 2018, 57, 17220.
doi: 10.1002/anie.201811266 |
|
(d) Lei, G.-Y.; Xu, M.-C.; Chang, R.; Funes-Ardoiz, I.; Ye, J.-T. J. Am. Chem. Soc. 2021, 143, 11251.
doi: 10.1021/jacs.1c05852 |
[1] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Nickel-Catalyzed Ring Opening Cross-Coupling of Aziridines [J]. Acta Chimica Sinica, 2024, 82(2): 190-212. |
[2] | Yuhan Wu, Dongdong Zhang, Hongyu Yin, Zhengnan Chen, Wen Zhao, Yuhua Chi. Density Functional Theory Study of Janus In2S2X Photocatalytic Reduction of CO2 under “Double Carbon” Target [J]. Acta Chimica Sinica, 2023, 81(9): 1148-1156. |
[3] | Minghui He, Ziqiu Ye, Guiqing Lin, Sheng Yin, Xinyi Huang, Xu Zhou, Ying Yin, Bo Gui, Cheng Wang. Research Progress of Porphyrin-Based Covalent Organic Frameworks in Photocatalysis★ [J]. Acta Chimica Sinica, 2023, 81(7): 784-792. |
[4] | Jiawen Liu, Weihuang Lin, Weijia Wang, Xueyi Guo, Ying Yang. Synthesis and Photocatalytic Degradation of Cu1.94S-SnS Nano-heterojunction [J]. Acta Chimica Sinica, 2023, 81(7): 725-734. |
[5] | Li Liu, Gang Zheng, Guoqiang Fan, Hongguang Du, Jiajing Tan. Research Progress in Organic Reactions Involving 4-Acyl/Carbamoyl/Alkoxycarbonyl Substituted Hantzsch Esters [J]. Acta Chimica Sinica, 2023, 81(6): 657-668. |
[6] | Fei Li, Huili Ding, Chaozhong Li. Hydrotrifluoromethylation of Alkenes with a Fluoroform-Derived Trifluoromethylboron Complex [J]. Acta Chimica Sinica, 2023, 81(6): 577-581. |
[7] | Qi Xueping, Wang Fei, Zhang Jian. A Post-Synthetic Method for the Construction of Titanium-Based Metal Organic Frameworks and Their Applications [J]. Acta Chimica Sinica, 2023, 81(5): 548-558. |
[8] | Jianqiang Chen, Gangguo Zhu, Jie Wu. Recent Advances in Radical-Based Dehydroxylation of Hydroxyl Groups via Oxalates [J]. Acta Chimica Sinica, 2023, 81(11): 1609-1623. |
[9] | Zhongshu Xie, Zhongxin Xue, Ziwen Xu, Qian Li, Hongyu Wang, Wei-Shi Li. Conjugated Crosslinking Modification of Graphitic Carbon Nitrides and Its Effect on Visible Light-Driven Photocatalytic Hydrogen Production [J]. Acta Chimica Sinica, 2022, 80(9): 1231-1237. |
[10] | Yu Qi, Fuxiang Zhang. Photocatalytic Water Splitting for Hydrogen Production※ [J]. Acta Chimica Sinica, 2022, 80(6): 827-838. |
[11] | Heng Shu, Yide-Rigen Bao, Yong Na. Photocatalytic Oxidation of 5-Hydroxymethylfurfural Selectively into 2,5-Diformylfuran with CdS Nanotube [J]. Acta Chimica Sinica, 2022, 80(5): 607-613. |
[12] | Xue Gong, Xinguo Ma, Fengda Wan, Wangyang Duan, Xiaoling Yang, Jinrong Zhu. Study on the Electronic Structure and Optical Properties of Two-dimensional Monolayer MoSi2X4 (X=N, P, As) [J]. Acta Chimica Sinica, 2022, 80(4): 510-516. |
[13] | Pan An, Qinghui Zhang, Zhuang Yang, Jiaxing Wu, Jiaying Zhang, Yajun Wang, Yuming Li, Guiyuan Jiang. Research Progress of Solar Hydrogen Production Technology under Double Carbon Target [J]. Acta Chimica Sinica, 2022, 80(12): 1629-1642. |
[14] | Xiaohan Yu, Wei Huang, Yanguang Li. Controllable Synthesis and Photocatalytic Applications of Two-dimensional Covalent Organic Frameworks [J]. Acta Chimica Sinica, 2022, 80(11): 1494-1506. |
[15] | Xusheng Wang, Xu Yang, Chunhui Chen, Hongfang Li, Yuanbiao Huang, Rong Cao. Graphene Quantum Dots Supported on Fe-based Metal-Organic Frameworks for Efficient Photocatalytic CO2 Reduction※ [J]. Acta Chimica Sinica, 2022, 80(1): 22-28. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||