Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (11): 1500-1507.DOI: 10.6023/A23070353 Previous Articles Next Articles
Special Issue: 庆祝《化学学报》创刊90周年合辑
Article
李东旭a, 徐翔a, 宋佳鸽a, 梁松挺a, 付予昂b, 路新慧b, 邹应萍a,*()
投稿日期:
2023-07-22
发布日期:
2023-10-22
作者简介:
基金资助:
Dongxu Lia, Xiang Xua, Jiage Songa, Songting Lianga, Yuang Fub, Xinhui Lub, Yingping Zoua()
Received:
2023-07-22
Published:
2023-10-22
Contact:
*E-mail: About author:
Supported by:
Share
Dongxu Li, Xiang Xu, Jiage Song, Songting Liang, Yuang Fu, Xinhui Lu, Yingping Zou. Rotaxane Structure Optimizes the Photovoltaic Performance of Polymer Solar Cells★[J]. Acta Chimica Sinica, 2023, 81(11): 1500-1507.
Polymer | λmaxsol/nm | λmaxfilm/nm | λonsetfilm/nm | Egopt/eV | HOMO/eV | LUMO/eV | Egcv/eV |
---|---|---|---|---|---|---|---|
PM6-L | 609 | 614 | 684 | 1.81 | –5.55 | –3.38 | 2.17 |
PM6-C1 | 611 | 619 | 690 | 1.80 | –5.54 | –3.37 | 2.17 |
PM6-C2 | 613 | 620 | 688 | 1.80 | –5.54 | –3.37 | 2.17 |
PM6-C3 | 612 | 622 | 686 | 1.81 | –5.53 | –3.39 | 2.14 |
PM6-C4 | 612 | 620 | 685 | 1.81 | –5.52 | –3.40 | 2.12 |
Polymer | λmaxsol/nm | λmaxfilm/nm | λonsetfilm/nm | Egopt/eV | HOMO/eV | LUMO/eV | Egcv/eV |
---|---|---|---|---|---|---|---|
PM6-L | 609 | 614 | 684 | 1.81 | –5.55 | –3.38 | 2.17 |
PM6-C1 | 611 | 619 | 690 | 1.80 | –5.54 | –3.37 | 2.17 |
PM6-C2 | 613 | 620 | 688 | 1.80 | –5.54 | –3.37 | 2.17 |
PM6-C3 | 612 | 622 | 686 | 1.81 | –5.53 | –3.39 | 2.14 |
PM6-C4 | 612 | 620 | 685 | 1.81 | –5.52 | –3.40 | 2.12 |
Active layers | Voc/V | Jsc/(mA•cm-2) | Jsc-EQE/(mA•cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
PM6-L:Y6 | 0.86 (0.85±0.01) | 24.84 (24.53±0.50) | 24.79 | 72.10 (70.75±1.50) | 15.33 (15.10±0.23) |
PM6-C1:Y6 | 0.84 (0.84±0.01) | 24.81 (24.63±0.30) | 24.20 | 75.47 (74.66±1.61) | 15.82 (15.55±0.27) |
PM6-C2:Y6 | 0.85 (0.84±0.01) | 25.80 (25.56±0.33) | 25.58 | 73.46 (72.66±1.22) | 16.23 (16.02±0.21) |
PM6-C3:Y6 | 0.85 (0.84±0.01) | 25.13 (24.88±0.40) | 24.99 | 75.63 (73.56±2.00) | 16.08 (15.88±0.20) |
PM6-C4:Y6 | 0.85 (0.84±0.01) | 25.58 (25.28±0.36) | 25.28 | 69.94 (68.30±1.70) | 15.21 (14.99±0.22) |
Active layers | Voc/V | Jsc/(mA•cm-2) | Jsc-EQE/(mA•cm-2) | FF/% | PCE/% |
---|---|---|---|---|---|
PM6-L:Y6 | 0.86 (0.85±0.01) | 24.84 (24.53±0.50) | 24.79 | 72.10 (70.75±1.50) | 15.33 (15.10±0.23) |
PM6-C1:Y6 | 0.84 (0.84±0.01) | 24.81 (24.63±0.30) | 24.20 | 75.47 (74.66±1.61) | 15.82 (15.55±0.27) |
PM6-C2:Y6 | 0.85 (0.84±0.01) | 25.80 (25.56±0.33) | 25.58 | 73.46 (72.66±1.22) | 16.23 (16.02±0.21) |
PM6-C3:Y6 | 0.85 (0.84±0.01) | 25.13 (24.88±0.40) | 24.99 | 75.63 (73.56±2.00) | 16.08 (15.88±0.20) |
PM6-C4:Y6 | 0.85 (0.84±0.01) | 25.58 (25.28±0.36) | 25.28 | 69.94 (68.30±1.70) | 15.21 (14.99±0.22) |
[1] |
Liang R.-Z.; Babics M.; Savikhin V.; Zhang W.; Le Corre V. M.; Lopatin S.; Kan Z.; Firdaus Y.; Liu S.; McCulloch I.; Toney M. F.; Beaujuge P. M. Adv. Energy Mater. 2018, 8, 1800264.
doi: 10.1002/aenm.v8.19 |
[2] |
Li S.; Zhan L.; Sun C.; Zhu H.; Zhou G.; Yang W.; Shi M.; Li C.-Z.; Hou J.; Li Y.; Chen H. J. Am. Chem. Soc. 2019, 141, 3073.
doi: 10.1021/jacs.8b12126 |
[3] |
Yuan J.; Zhang H.; Zhang R.; Wang Y.; Hou J.; Leclerc M.; Zhan X.; Huang F.; Gao F.; Zou Y.; Li Y. Chem 2020, 6, 2147.
doi: 10.1016/j.chempr.2020.08.003 |
[4] |
Sun R.; Wu Y.; Guo J.; Wang Y.; Qin F.; Shen B.; Li D.; Wang T.; Li Y.; Zhou Y.; Lu G.; Li Y.; Min J. Energy Environ. Sci. 2021, 14, 3174.
doi: 10.1039/D1EE00051A |
[5] |
Li T.; Zhan X. Acta Chim. Sinica 2021, 79, 257. (in Chinese)
doi: 10.6023/A20110502 |
( 李腾飞, 占肖卫, 化学学报, 2021, 79, 257.)
doi: 10.6023/A20110502 |
|
[6] |
Miao J.; Ding Z.; Liu J.; Wang L. Acta Chim. Sinica 2021, 79, 545. (in Chinese)
doi: 10.6023/A20120589 |
( 苗俊辉, 丁自成, 刘俊, 王利祥, 化学学报, 2021, 79, 545.)
doi: 10.6023/A20120589 |
|
[7] |
Zhang Y.; Zheng J.; Jiang Z.; He X.; Kim J.; Xu L.; Qin M.; Lu X.; Kyaw A. K. K.; Choy W. C. H. Adv. Energy Mater. 2023, 13, 2203266.
doi: 10.1002/aenm.v13.7 |
[8] |
Shen Y. F.; Zhang H.; Zhang J.; Tian C.; Shi Y.; Qiu D.; Zhang Z.; Lu K.; Wei Z. Adv. Mater. 2023, 35, 2209030.
doi: 10.1002/adma.v35.10 |
[9] |
Feng L.; Yuan J.; Zhang Z.; Peng H.; Zhang Z.-G.; Xu S.; Liu Y.; Li Y.; Zou Y. ACS Appl. Mater. Interfaces 2017, 9, 31985.
doi: 10.1021/acsami.7b10995 |
[10] |
Yuan J.; Zhang Y.; Zhou L.; Zhang G.; Yip H.-L.; Lau T.-K.; Lu X.; Zhu C.; Peng H.; Johnson P. A.; Leclerc M.; Cao Y.; Ulanski J.; Li Y.; Zou Y. Joule 2019, 3, 1140.
doi: 10.1016/j.joule.2019.01.004 |
[11] |
Jiang K.; Wei Q.; Lai J. Y. L.; Peng Z.; Kim H. K.; Yuan J.; Ye L.; Ade H.; Zou Y.; Yan H. Joule 2019, 3, 3020.
doi: 10.1016/j.joule.2019.09.010 |
[12] |
Chen Y.; Bai F.; Peng Z.; Zhu L.; Zhang J.; Zou X.; Qin Y.; Kim H. K.; Yuan J.; Ma L. K.; Zhang J.; Yu H.; Chow P. C. Y.; Huang F.; Zou Y.; Ade H.; Liu F.; Yan H. Adv. Energy Mater. 2020, 11, 2003141.
doi: 10.1002/aenm.v11.3 |
[13] |
Cui Y.; Yao H.; Zhang J.; Xian K.; Zhang T.; Hong L.; Wang Y.; Xu Y.; Ma K.; An C.; He C.; Wei Z.; Gao F.; Hou J. Adv. Mater. 2020, 32, 1908205.
doi: 10.1002/adma.v32.19 |
[14] |
Song J.; Cai F.; Zhu C.; Chen H.; Wei Q.; Li D.; Zhang C.; Zhang R.; Yuan J.; Peng H.; So S. K.; Zou Y. Solar RRL 2021, 5, 2100281.
doi: 10.1002/solr.v5.8 |
[15] |
Li C.; Zhou J.; Song J.; Xu J.; Zhang H.; Zhang X.; Guo J.; Zhu L.; Wei D.; Han G.; Min J.; Zhang Y.; Xie Z.; Yi Y.; Yan H.; Gao F.; Liu F.; Sun Y. Nature Energy 2021, 6, 605.
doi: 10.1038/s41560-021-00820-x |
[16] |
Xu X.; Qi Y.; Luo X.; Xia X.; Lu X.; Yuan J.; Zhou Y.; Zou Y. Fundamental Research 2022, DOI: 10.1016/j.fmre.2022.01.025.
|
[17] |
Xu X.; Sun C.; Jing J.; Niu T.; Wu X.; Zhang K.; Huang F.; Xu Q.; Yuan J.; Lu X.; Zhou Y.; Zou Y. ACS Appl Mater Interfaces 2022, 14, 36582.
doi: 10.1021/acsami.2c07883 |
[18] |
Wei Q.; Liang S.; Liu W.; Hu Y.; Qiu B.; Ren J.; Yuan J.; Huang F.; Zou Y.; Li Y. ACS Energy Lett. 2022, 7, 2373.
doi: 10.1021/acsenergylett.2c00985 |
[19] |
Liu W.; Yuan J.; Zhu C.; Wei Q.; Liang S.; Zhang H.; Zheng G.; Hu Y.; Meng L.; Gao F.; Li Y.; Zou Y. Sci. China: Chem. 2022, 65, 1374.
doi: 10.1007/s11426-022-1281-0 |
[20] |
Han C.; Wang J.; Zhang S.; Chen L.; Bi F.; Wang J.; Yang C.; Wang P.; Li Y.; Bao X. Adv. Mater. 2023, 35, 2208986.
doi: 10.1002/adma.v35.10 |
[21] |
Bi P.; Wang J.; Cui Y.; Zhang J.; Zhang T.; Chen Z.; Qiao J.; Dai J.; Zhang S.; Hao X.; Wei Z.; Hou J. Adv. Mater. 2023, 35, 2210865.
doi: 10.1002/adma.v35.16 |
[22] |
Li D.; Deng N.; Fu Y.; Guo C.; Zhou B.; Wang L.; Zhou J.; Liu D.; Li W.; Wang K.; Sun Y.; Wang T. Adv. Mater. 2023, 35, 2208211.
doi: 10.1002/adma.v35.6 |
[23] |
Wang J.; Wang Y.; Bi P.; Chen Z.; Qiao J.; Li J.; Wang W.; Zheng Z.; Zhang S.; Hao X.; Hou J. Adv. Mater. 2023, 2301583.
|
[24] |
Zheng Z.; Wang J.; Bi P.; Ren J.; Wang Y.; Yang Y.; Liu X.; Zhang S.; Hou J. Joule 2022, 6, 171.
doi: 10.1016/j.joule.2021.12.017 |
[25] |
Zhang M.; Guo X.; Ma W.; Ade H.; Hou J. Adv. Mater. 2015, 27, 4655.
doi: 10.1002/adma.v27.31 |
[26] |
Li Z.; Li X.; Xue J.; Zhang J.; Zhu C.; Li J.; Ma W.; Meng L.; Li Y. ACS Energy Lett. 2023, 2488.
|
[27] |
Shi M.; Wang T.; Wu Y.; Sun R.; Wang W.; Guo J.; Wu Q.; Yang W.; Min J. Adv. Energy Mater. 2020, 11, 2002709.
doi: 10.1002/aenm.v11.1 |
[28] |
Li S.; Shi C.; Luo X.; Li D.; Lu X.; Hu Y.; Yuan J.; Zou Y. Solar RRL 2023, 2201090.
|
[29] |
Zhu W.; Spencer A. P.; Mukherjee S.; Alzola J. M.; Sangwan V. K.; Amsterdam S. H.; Swick S. M.; Jones L. O.; Heiber M. C.; Herzing A. A.; Li G.; Stern C. L.; DeLongchamp D. M.; Kohlstedt K. L.; Hersam M. C.; Schatz G. C.; Wasielewski M. R.; Chen L. X.; Facchetti A.; Marks T. J. J. Am. Chem. Soc. 2020, 142, 14532.
doi: 10.1021/jacs.0c05560 |
[30] |
Schneider S. A.; Gu K. L.; Yan H.; Abdelsamie M.; Bao Z.; Toney M. F. Chem. Mat. 2021, 33, 5951.
doi: 10.1021/acs.chemmater.1c01050 |
[31] |
Li S.; Ma Q.; Chen S.; Meng L.; Zhang J.; Zhang Z.; Yang C.; Li Y. J. Mater. Chem. C 2020, 8, 15296.
doi: 10.1039/D0TC03217D |
[32] |
Bao S.; Yang H.; Fan H.; Zhang J.; Wei Z.; Cui C.; Li Y. Adv. Mater. 2021, 33, 2105301.
|
[33] |
Yu R.; Yao H.; Xu Y.; Li J.; Hong L.; Zhang T.; Cui Y.; Peng Z.; Gao M.; Ye L.; Tan Z. a.; Hou J. Adv. Funct. Mater. 2021, 31, 2010535.
doi: 10.1002/adfm.v31.18 |
[34] |
Ma Y.-F.; Zhang Y.; Zhang H.-L. J. Mater. Chem. C 2022, 10, 2364.
doi: 10.1039/D1TC04224F |
[35] |
Song X.; Zhang K.; Guo R.; Sun K.; Zhou Z.; Huang S.; Huber L.; Reus M.; Zhou J.; Schwartzkopf M.; Roth S. V.; Liu W.; Liu Y.; Zhu W.; Müller‐Buschbaum P. Adv. Mater. 2022, 34, 2200907.
doi: 10.1002/adma.v34.20 |
[36] |
van Franeker J. J.; Turbiez M.; Li W.; Wienk M. M.; Janssen R. A. Nat. Commun. 2015, 6, 6229.
doi: 10.1038/ncomms7229 pmid: 25656313 |
[37] |
Yu R. N.; Yao H. F.; Hong L.; Qin Y. P.; Zhu J.; Cui Y.; Li S. S.; Hou J. H. Nat. Commun. 2018, 9, 9.
doi: 10.1038/s41467-017-01881-x |
[38] |
Amabilino D. B.; Stoddart J. F. Chem. Rev. 2002, 95, 2725.
doi: 10.1021/cr00040a005 |
[39] |
Ashton P. R.; Baxter I.; Fyfe M. C. T.; Raymo F. M.; Spencer N.; Stoddart J. F.; White A. J. P.; Williams D. J. J. Am. Chem. Soc. 1998, 120, 2297.
doi: 10.1021/ja9731276 |
[40] |
Fang L.; Olson M. A.; Benitez D.; Tkatchouk E.; Goddard W. A., 3rd; Stoddart J. F. Chem. Soc. Rev. 2010, 39, 17.
doi: 10.1039/b917901a pmid: 20023833 |
[41] |
Mena-Hernando S.; Perez E. M. Chem. Soc. Rev. 2019, 48, 5016.
doi: 10.1039/c8cs00888d pmid: 31418435 |
[42] |
Chen L.; Sheng X.; Li G.; Huang F. Chem. Soc. Rev. 2022, 51, 7046.
doi: 10.1039/D2CS00202G |
[43] |
Valentina S.; Ogawa T.; Nakazono K.; Aoki D.; Takata T. Chem. Eur. J. 2016, 22, 8759.
doi: 10.1002/chem.v22.26 |
[44] |
Li W. J.; Hu Z.; Xu L.; Wang X. Q.; Wang W.; Yin G. Q.; Zhang D. Y.; Sun Z.; Li X.; Sun H.; Yang H. B. J. Am. Chem. Soc. 2020, 142, 16748.
doi: 10.1021/jacs.0c07292 |
[45] |
Asay M. J.; Fisher S. P.; Lee S. E.; Tham F. S.; Borchardt D.; Lavallo V. Chem. Commun. 2015, 51, 5359.
doi: 10.1039/C4CC08267B |
[46] |
Riedel I.; Parisi J.; Dyakonov V.; Lutsen L.; Vanderzande D.; Hummelen J. C. Adv. Funct. Mater. 2004, 14, 38.
doi: 10.1002/adfm.v14:1 |
[47] |
Ran N. A.; Love J. A.; Heiber M. C.; Jiao X.; Hughes M. P.; Karki A.; Wang M.; Brus V. V.; Wang H.; Neher D.; Ade H.; Bazan G. C.; Nguyen T.-Q. Adv. Energy Mater. 2018, 8, 1701073.
doi: 10.1002/aenm.v8.5 |
[48] |
Kiermasch D.; Baumann A.; Fischer M.; Dyakonov V.; Tvingstedt K. Energy Environ. Sci. 2018, 11, 629.
doi: 10.1039/C7EE03155F |
[1] | Wenjing Hu, Jiusheng Li. Synthesis of Bis/triaza Crown Ethers and Study of Their Properties as Friction Modifiers※ [J]. Acta Chimica Sinica, 2022, 80(3): 310-316. |
[2] | Hu Yuhui, Wu Wenlin, Yu Liyang, Luo Kaijun, Xu Xiaopeng, Li Ying, Peng Qiang. Synthesis and Photovoltaic Properties of Perylene Diimide Based Small Molecular Acceptors with a Diketopyrrolopyrrole Core [J]. Acta Chimica Sinica, 2020, 78(11): 1246-1254. |
[3] | Hao Zhenliang, Ruan Zilin, Yang Xiaotian, Cai Yiting, Lu Jianchen, Cai Jinming. Research Progress of On-surface Chemical Reaction for Organics in Ultra-High Vacuum [J]. Acta Chim. Sinica, 2018, 76(8): 585-596. |
[4] | Jia Tao, Zheng Nannan, Cai Wanqing, Ying Lei, Huang Fei. Naphthalene Diimide-Based Polymers Consisting of Amino Alkyl Side Groups:Three-Component One-Pot Polymerization and Their Application in Polymer Solar Cells [J]. Acta Chim. Sinica, 2017, 75(8): 808-818. |
[5] | Zhu Xin, Zhu Kai, Sun Bangjin, Fan Jian, Zhou Yi, Song Bo. Comprehensive Study of the Effect of DPE Additive on Photovoltaic Performance of 5,6-Difluoro-benzo[1,2,5]thiadiazole Based Donor-acceptor Copolymers [J]. Acta Chim. Sinica, 2017, 75(5): 464-472. |
[6] | Xu Jun, Wang Zhiqiang, Zhang Xi. Controlled Fabrication of Two-Dimensional Organic Assemblies [J]. Acta Chim. Sinica, 2016, 74(6): 467-471. |
[7] | Li Yuda, Zhang Heng, Wang Xunchang, Wang Feng, Xia Yangjun. Synthesis and Photovoltaic Properties of Silole-Containing Conjugated Polymers [J]. Acta Chim. Sinica, 2015, 73(10): 1055-1060. |
[8] | Zhang Kai, Guan Xing, Huang Fei, Cao Yong. Performance Study of Water/Alcohol Soluble Polymer Interface Materials in Polymer Optoelectronic Devices [J]. Acta Chimica Sinica, 2012, 70(24): 2489-2495. |
[9] | Li Xinwei, Zhao Bin, Cao Zhengcai, Shen Ping, Tan Songting. Synthesis and Photovoltaic Properties of Conjugated Polymers Based on 1,2,4-Triazole Derivatives [J]. Acta Chimica Sinica, 2012, 70(23): 2433-2439. |
[10] | Zhang Yujian, Xie Bin, Zhang Liyang, Ma Li, He Shuyan, Li Guowen. Preparation and Properties of Amphiphilic Polymer Nanospheres Containing Aza-crown ether [J]. Acta Chimica Sinica, 2012, 0(04): 499-504. |
[11] | ZHANG Qiang, XU Juan. Two Chemosensors Based on the Fluorescent Group Armed-Azacrown Ether [J]. Acta Chimica Sinica, 2011, 69(19): 2287-2292. |
[12] | TANG Cheng-Cheng, WANG Li-Hua, YUAN Yan-Bin, ZHANG Chen-Lin, LIU Bi-Qian. Synthesis of Amphiphilic Crown Ether Compound and Application in Ion Channel Membrane [J]. Acta Chimica Sinica, 2011, 69(03): 343-350. |
[13] | ZHANG Qiang. Synthesis of a Novel Tetraaza-18-crown-6 Derivative and Its Complexation Properties with Cations [J]. Acta Chimica Sinica, 2008, 66(5): 567-570. |
[14] | JIANG Wei ,ZHANG Heng-Yi, LIU Yu*. The [J]. Acta Chimica Sinica, 2008, 66(5): 531-535. |
[15] | DUAN Zhong-Yu, ZHANG Heng-Yi, LIU Yu*. Arylene-bridged Bis(benzoaza-15-crown-5) Synthesis and Selective Binding to Alkali/Heavy Metal Ions [J]. Acta Chimica Sinica, 2005, 63(8): 752-756. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||