Acta Chimica Sinica ›› 2023, Vol. 81 ›› Issue (12): 1701-1707.DOI: 10.6023/A23080374 Previous Articles Next Articles
Article
刘健a, 欧金花a,*(), 李泽平a, 蒋婧怡a, 梁荣涛a, 张文杰a, 刘开建a,*(), 韩瑜b,c,*()
投稿日期:
2023-08-10
发布日期:
2023-12-01
基金资助:
Jian Liua, Jinhua Oua(), Zeping Lia, jingyi Jianga, Rongtao Lianga, Wenjie Zhanga, kaijian Liua(), Yu Hanb,c()
Received:
2023-08-10
Published:
2023-12-01
Contact:
*E-mail: Supported by:
Share
Jian Liu, Jinhua Ou, Zeping Li, jingyi Jiang, Rongtao Liang, Wenjie Zhang, kaijian Liu, Yu Han. Efficient Catalytic Hydrogenation of Nitroaromatic Using Cobalt Single-atom Derived from Metal-organic Framework[J]. Acta Chimica Sinica, 2023, 81(12): 1701-1707.
Entry | Cat. | Solvent | Time/h | Con./% | Yieldb/% |
---|---|---|---|---|---|
1 | ZIF-8 | EtOH | 5 | 9 | 2 |
2 | ZIF-67 | EtOH | 5 | 48 | 9 |
3 | Zn-Co MOF | EtOH | 5 | 50 | 11 |
4 | Co-N-C-900 | EtOH | 5 | 100 | 61 |
5 | Co-N-C-1000 | EtOH | 5 | 100 | 72 |
6 | Co-N-C-1100 | EtOH | 5 | 100 | 65 |
7 | N-C-1000 | EtOH | 5 | N.R. | N.R. |
8 | Co@N-C-1000 | EtOH | 5 | 39 | 25 |
9 | Co-N-C-1000 | DMSO | 5 | 10 | 6 |
10 | Co-N-C-1000 | DMF | 5 | 8 | 4 |
11 | Co-N-C-1000 | MeCN | 5 | 32 | 27 |
12 | Co-N-C-1000 | THF | 5 | 65 | 60 |
13 | Co-N-C-1000 | NMP | 5 | 40 | 29 |
14 | Co-N-C-1000 | DCE | 5 | 8 | 2 |
15 | Co-N-C-1000 | EtOH | 8 | 100 | 89 |
16 | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
17c | Co-N-C-1000 | EtOH | 10 | 94 | 59 |
18d | Co-N-C-1000 | EtOH | 10 | 90 | 68 |
19e | Co-N-C-1000 | EtOH | 10 | 95 | 37 |
20f | Co-N-C-1000 | EtOH | 10 | 100 | 70 |
21g | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
22h | Co-N-C-1000 | EtOH | 4 | 100 | 100 |
Entry | Cat. | Solvent | Time/h | Con./% | Yieldb/% |
---|---|---|---|---|---|
1 | ZIF-8 | EtOH | 5 | 9 | 2 |
2 | ZIF-67 | EtOH | 5 | 48 | 9 |
3 | Zn-Co MOF | EtOH | 5 | 50 | 11 |
4 | Co-N-C-900 | EtOH | 5 | 100 | 61 |
5 | Co-N-C-1000 | EtOH | 5 | 100 | 72 |
6 | Co-N-C-1100 | EtOH | 5 | 100 | 65 |
7 | N-C-1000 | EtOH | 5 | N.R. | N.R. |
8 | Co@N-C-1000 | EtOH | 5 | 39 | 25 |
9 | Co-N-C-1000 | DMSO | 5 | 10 | 6 |
10 | Co-N-C-1000 | DMF | 5 | 8 | 4 |
11 | Co-N-C-1000 | MeCN | 5 | 32 | 27 |
12 | Co-N-C-1000 | THF | 5 | 65 | 60 |
13 | Co-N-C-1000 | NMP | 5 | 40 | 29 |
14 | Co-N-C-1000 | DCE | 5 | 8 | 2 |
15 | Co-N-C-1000 | EtOH | 8 | 100 | 89 |
16 | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
17c | Co-N-C-1000 | EtOH | 10 | 94 | 59 |
18d | Co-N-C-1000 | EtOH | 10 | 90 | 68 |
19e | Co-N-C-1000 | EtOH | 10 | 95 | 37 |
20f | Co-N-C-1000 | EtOH | 10 | 100 | 70 |
21g | Co-N-C-1000 | EtOH | 10 | 100 | 100 |
22h | Co-N-C-1000 | EtOH | 4 | 100 | 100 |
[1] |
Yan, Z.; Xie, H.-P.; Shen, H.-Q.; Zhou, Y.-G. Org. Lett. 2018, 20, 1094.
doi: 10.1021/acs.orglett.7b04060 |
[2] |
Yang, H.; Wang, L.; Xu, S.; Hui, X.; Cao, Y.; He, P.; Li, Y.; Li, H. Chem. Eng. J. 2022, 431, 133863.
|
[3] |
Romero, A. H. ChemistrySelect 2020, 5, 13054.
doi: 10.1002/slct.v5.42 |
[4] |
Lakshminarayana, B.; Selvaraj, M.; Satyanarayana, G.; Subrahmanyam, C. Catal. Rev. 2022, 10.1080/01614940.2022.2057045.
|
[5] |
Junge, K.; Wendt, B.; Shaikh, N.; Beller, M. Chem. Commun. 2010, 46, 1769.
doi: 10.1039/b924228g |
[6] |
Long, J.; Zhou, Y.; Li, Y. Chem. Commun. 2015, 51, 2331.
doi: 10.1039/C4CC08946D |
[7] |
Shalom, M.; Molinari, V.; Esposito, D.; Clavel, G.; Ressnig, D.; Giordano, C.; Antonietti, M. Adv. Mater. 2014, 26, 1272.
doi: 10.1002/adma.v26.8 |
[8] |
Jin, H.; Li, P.; Cui, P.; Shi, J.; Zhou, W.; Yu, X.; Song, W.; Cao, C. Nat. Commun. 2022, 13, 723.
doi: 10.1038/s41467-022-28367-9 |
[9] |
Chugh, V.; Chatterjee, B.; Chang, W. C.; Cramer, H. H.; Hindemith, C.; Randel, H.; Weyhermüller, T.; Farès, C.; Werlé, C. Angew. Chem. Int. Ed. 2022, 61, e202205515.
|
[10] |
Sarki, N.; Kumar, R.; Singh, B.; Ray, A.; Naik, G.; Natte, K.; Narani, A. ACS Omega 2022, 7, 19804.
doi: 10.1021/acsomega.2c01566 |
[11] |
Li, J.; Ding, S.; Wang, F.; Zhao, H.; Kou, J.; Akram, M.; Xu, M.; Gao, W.; Liu, C.; Yang, H. J. Colloid Interf. Sci. 2022, 625, 640.
doi: 10.1016/j.jcis.2022.06.052 |
[12] |
Wang, H.; Wang, Y.; Li, Y.; Lan, X.; Ali, B.; Wang, T. ACS Appl. Mater. Interfaces 2020, 12, 34021.
doi: 10.1021/acsami.0c06632 |
[13] |
Yang, L.; Jiang, Z.; Fan, G.; Li, F. Catal. Sci. Technol. 2014, 4, 1123.
doi: 10.1039/c3cy01017a |
[14] |
Baghbanian, S. M.; Farhang, M.; Vahdat, S. M.; Tajbakhsh, M. J. Mol. Catal. A-Chem. 2015, 407, 128.
doi: 10.1016/j.molcata.2015.06.029 |
[15] |
Natte, K.; Goyal, V.; Sarki, N.; Poddar, M. K.; Ray, A. New J. Chem. 2021, 45, 14687.
doi: 10.1039/D1NJ01654G |
[16] |
Zhang, S.; Chang, C. R.; Huang, Z. Q.; Li, J.; Wu, Z.; Ma, Y.; Zhang, Z.; Wang, Y.; Qu, Y. J. Am. Chem. Soc. 2016, 138, 2629.
doi: 10.1021/jacs.5b11413 pmid: 26828123 |
[17] |
Tian, H.; Zhou, J.; Li, Y.; Wang, Y.; Liu, L.; Ai, Y.; Hu, Z.-N.; Li, J.; Guo, R.; Liu, Z.; Sun, H.-b.; Liang, Q. ChemCatChem 2019, 11, 5543.
doi: 10.1002/cctc.v11.22 |
[18] |
Ishikawa, H.; Nakatani, N.; Yamaguchi, S.; Mizugaki, T.; Mitsudome, T. ACS Catal. 2023, 13, 5744.
doi: 10.1021/acscatal.3c00128 |
[19] |
Lara, P.; Philippot, K. Catal. Sci. Technol. 2014, 4, 2445.
doi: 10.1039/C4CY00111G |
[20] |
Chen, X.; Shen, K.; Ding, D.; Chen, J.; Fan, T.; Wu, R.; Li, Y. ACS Catal. 2018, 8, 10641.
doi: 10.1021/acscatal.8b01834 |
[21] |
Shi, T.; Li, H.; Yao, L.; Ji, W.; Au, C.-T. Appl. Catal. A-Gen. 2012, 425-426, 68.
doi: 10.1016/j.apcata.2012.03.003 |
[22] |
Chen, J. L.; Xu, F.; Ma, F. Q.; Ren, M. N.; Zhou, J. D.; Yu, Z. Q.; Su, W. K. J. Flow Chem. 2021, 11, 823.
doi: 10.1007/s41981-021-00156-3 |
[23] |
Deshpande, R. M.; Mahajan, A. N.; Diwakar, M. M.; Ozarde, P. S.; Chaudhari, R. V. J. Org. Chem. 2004, 69, 4835.
pmid: 15230611 |
[24] |
Liang, X.; Fu, N.; Yao, S.; Li, Z.; Li, Y. Nat. Commun. 2022, 144, 18155.
|
[25] |
Gan, T.; Wang, D. Nano Res. 2023, doi: 10.1007/s12274-023-5700-4.
|
[26] |
Li, R.; Wang, D. Nano Res. 2022, 15, 6888.
doi: 10.1007/s12274-022-4371-x |
[27] |
Li, J.; Li, Y.; Zhang, T. Sci. China Mater. 2020, 63, 889.
doi: 10.1007/s40843-020-1412-y |
[28] |
Li, L. L.; Liu, Y.; Song, S. Y.; Zhang, H. J. Acta Chim. Sinica 2022, 80, 16 (in Chinese).
doi: 10.6023/A21100467 |
(李玲玲, 刘宇, 宋术岩, 张洪杰, 化学学报, 2022, 80, 16.)
doi: 10.6023/A21100467 |
|
[29] |
Hao, Y.-C.; Chen, L.-W.; Li, J.; Guo, Y.; Su, X.; Shu, M.; Zhang, Q.; Gao, W.-Y.; Li, S.; Yu, Z.-L. Nat. Commun. 2021, 12, 2682.
doi: 10.1038/s41467-021-22991-7 pmid: 33976220 |
[30] |
Guo, X.; Lin, S.; Gu, J.; Zhang, S.; Chen, Z.; Huang, S. ACS Catal. 2019, 9, 11042.
doi: 10.1021/acscatal.9b02778 |
[31] |
Lu, X. Q.; Cao, S. F.; Wei, X. F.; Li, S. R.; Wei, S. X. Acta Chim. Sinica 2020, 78, 1001 (in Chinese).
doi: 10.6023/A20060223 |
(鲁效庆, 曹守福, 魏晓飞, 李邵仁, 魏淑贤, 化学学报, 2020, 78, 1001.)
doi: 10.6023/A20060223 |
|
[32] |
Zhao, R. Y.; Ji, G. P.; Liu, Z. M. Chem. J. Chin. Univ. 2022, 43, 189 (in Chinese).
|
(赵润瑶, 纪桂鹏, 刘志敏, 高等学校化学学报, 2022, 43, 189.) (in Chinese).
|
|
[33] |
Jin, X. Y.; Zhang, L. B.; Sun, X. P.; Han, B. X. Chem. J. Chin. Univ. 2022, 43, 11 (in Chinese).
|
(金湘元, 张礼兵, 孙晓甫, 韩布兴, 高等学校化学学报, 2022, 43, 11.)
|
|
[34] |
Zhou, W. W.; Wei, X. Y.; Xu, M. Y.; Fan, F.; Chen, Z. P.; Kang, J.; Zhang, L.; Zhou, A. N. Chinese J. Inorg. Chem. 2023, 39, 1261 (in Chinese).
|
(周文武, 韦晓艺, 徐梦宇, 樊飞, 陈治平, 康洁, 张乐, 周安宁, 无机化学学报, 2023, 39, 1261.)
|
|
[35] |
Huang, J.; Yang, S.; Jiang, S.; Sun, C.; Song, S. ACS Catal. 2022, 12, 14708.
doi: 10.1021/acscatal.2c05014 |
[36] |
Hu, L.; Huang, J.; Wang, J.; Jiang, S.; Sun, C.; Song, S. Appl. Catal. B-Environ. 2023, 320, 121945.
|
[37] |
Jiao, L.; Xu, W.; Wu, Y.; Yan, H.; Gu, W.; Du, D.; Lin, Y.; Zhu, C. Chem. Soc. Rev. 2021, 50, 750.
doi: 10.1039/d0cs00367k pmid: 33306069 |
[38] |
Zhang, X.; Li, G.; Chen, G.; Wu, D.; Zhou, X.; Wu, Y. Coordin. Chem. Rev. 2020, 418, 213376.
|
[39] |
Lu, C.; Fang, R.; Chen, X. Adv. Mater. 2020, 32, 1906548.
|
[40] |
Liang, Z.; Shen, J.; Xu, X.; Li, F.; Liu, J.; Yuan, B.; Yu, Y.; Zhu, M. Adv. Mater. 2022, 34, 2200102.
|
[41] |
Jagadeesh, R. V.; Murugesan, K.; Alshammari, A. S.; Neumann, H.; Pohl, M.-M.; Radnik, J.; Beller, M. Science 2017, 358, 326.
doi: 10.1126/science.aan6245 |
[42] |
Li, M.; Chen, S.; Jiang, Q.; Chen, Q.; Guo, X. ACS Catal. 2021, 11, 3026.
doi: 10.1021/acscatal.0c05479 |
[43] |
Zhou, D.; Zhang, L.; Liu, X.; Qi, H.; Liu, Q.; Yang, J.; Su, Y.; Ma, J.; Yin, J.; Wang, A. Nano Res. 2022, 15, 519.
doi: 10.1007/s12274-021-3511-z |
[44] |
Song, Z.; Zhang, L.; Doyle-Davis, K.; Fu, X.; Luo, J. L.; Sun, X. Adv. Energy Mater. 2020, 10, 2001561.
|
[45] |
Ma, S.; Han, W.; Han, W.; Dong, F.; Tang, Z. J. Mater. Chem. A 2023, 11, 3315.
doi: 10.1039/D2TA08735A |
[46] |
Hwang, J. Korean J. Chem. Eng. 2021, 38, 1104.
doi: 10.1007/s11814-021-0741-4 |
[47] |
Ou, J.; Xiang, J.; Liu, J.; Sun, L. ACS Appl. Mater. Interfaces 2019, 11, 14862.
doi: 10.1021/acsami.8b21626 |
[48] |
Ou, J.; Hu, B.; He, S.; Wang, W.; Han, Y. Sol. Energy 2020, 201, 693.
doi: 10.1016/j.solener.2020.03.050 |
[49] |
Ou, J.; He, S.; Wang, W.; Tan, H.; Liu, K. Org. Chem. Front. 2021, 8, 3102.
doi: 10.1039/D1QO00175B |
[50] |
Ou, J.; Tan, H.; He, S.; Wang, W.; Hu, B.; Yu, G.; Liu, K. J. Org. Chem. 2021, 86, 14974.
doi: 10.1021/acs.joc.1c01701 |
[51] |
Liu, K.-J.; Wang, Z.; Lu, L.-H.; Chen, J.-Y.; Zeng, F.; Lin, Y.-W.; Cao, Z.; Yu, X.; He, W.-M. Green Chem. 2021, 23, 496.
doi: 10.1039/D0GC02663H |
[52] |
Yin, P.; Yao, T.; Wu, Y.; Zheng, L.; Lin, Y.; Liu, W.; Ju, H.; Zhu, J.; Hong, X.; Deng, Z.; Zhou, G.; Wei, S.; Li, Y. Angew. Chem. Int. Ed. 2016, 55, 10800.
doi: 10.1002/anie.v55.36 |
[53] |
Li, X.; Surkus, A. E.; Rabeah, J.; Anwar, M.; Dastigir, S.; Junge, H.; Brückner, A.; Beller, M. Angew. Chem. Int. Ed. 2020, 59, 15849.
doi: 10.1002/anie.v59.37 |
[54] |
Cao, Y.; Liu, K.; Wu, C.; Zhang, H.; Zhang, Q. Appl. Catal. A-Gen. 2020, 592, 117434.
|
[55] |
Huang, H.; Tan, M.; Wang, X.; Zhang, M.; Guo, S.; Zou, X.; Lu, X. ACS Appl. Mater. Interfaces 2018, 10, 5413.
doi: 10.1021/acsami.7b14513 |
[1] | Guoqing Cui, Yiyang Hu, Yingjie Lou, Mingxia Zhou, Yuming Li, Yajun Wang, Guiyuan Jiang, Chunming Xu. Research Progress on the Design, Preparation and Properties of Catalysts for CO2 Hydrogenation to Alcohols [J]. Acta Chimica Sinica, 2023, 81(8): 1081-1100. |
[2] | Xinhong Cai, Jianzhong Chen, Wanbin Zhang. Development of Construction of Chiral C—X Bonds through Nickel Catalyzed Asymmetric Hydrogenation★ [J]. Acta Chimica Sinica, 2023, 81(6): 646-656. |
[3] | Huang Jiapian, Liu Fei, Wu Jie. Recent Advances in the Transformation of Difluorocyclopropenes★ [J]. Acta Chimica Sinica, 2023, 81(5): 520-532. |
[4] | Bin Xu, Xiuzhi Wei, Jiangmin Sun, Jianguo Liu, Longlong Ma. In-situ Synthesis of Nitrogen-doped Graphene Layer Encapsulated Palladium Nanoparticles for Highly Selective Hydrogenation of Vanillin [J]. Acta Chimica Sinica, 2023, 81(3): 239-245. |
[5] | Junmin Chen, Chengqian Cui, Hanlin Liu, Guodong Li. Study on the Selective Hydrogenation of Quinoline Catalyzed by Composites of Metal-Organic Framework and Pt Nanoparticles※ [J]. Acta Chimica Sinica, 2022, 80(4): 467-475. |
[6] | Jun Luo, Lichao Jia, Dong Yan, Jian Li. Performance and Improvement of Ni-based Catalysts for Ethane Dehydrogenation [J]. Acta Chimica Sinica, 2022, 80(3): 317-326. |
[7] | Lingling Li, Yu Liu, Shuyan Song, Hongjie Zhang. Synthesis of Cu Single Atom with Adjustable Coordination Environment and Its Catalytic Hydrogenation Performance※ [J]. Acta Chimica Sinica, 2022, 80(1): 16-21. |
[8] | Yinghui Wang, Simin Wei, Jinwei Duan, Kang Wang. Mechanism of Silyl Enol Ethers Hydrogenation Catalysed by Frustrated Lewis Pairs: A Theoretical Study [J]. Acta Chimica Sinica, 2021, 79(9): 1164-1172. |
[9] | Xiaomeng Zhang, Xiya Li, Wanfeng Xiong, Hongfang Li, Rong Cao. Ultrafine Platinum Nanoparticles Derived from Supramolecular Crystal for Catalytic Hydrogenation of Nitroarenes [J]. Acta Chimica Sinica, 2021, 79(2): 180-185. |
[10] | Min Zhao, Xue Wang, Yanan Liu, Yufei He, Dianqing Li. Preparation of Efficient Pd/MgAl-LDO@Al2O3 Catalyst for Phenol Hydrogenation to Cyclohexanone [J]. Acta Chimica Sinica, 2021, 79(12): 1518-1525. |
[11] | Wang Yongsheng, Zhao Yunlu, Zhao Zhenzhen, Lan Xiaolin, Xu Jinxia Xu Weixiang, Duan Zhengkang. Study on Preparation of Cu-ZrO2 Catalyst Coated by Nitrogen-Doped Carbon and Catalytic Dehydrogenation Performance [J]. Acta Chim. Sinica, 2019, 77(7): 661-668. |
[12] | Gu Xuesong, Li Xiaogen, Xie Jianhua, Zhou Qilin. Recent Progress in Homogeneous Catalytic Hydrogenation of Esters [J]. Acta Chimica Sinica, 2019, 77(7): 598-612. |
[13] | Fu Wenwen, Li Yan, Liang Changhai. Dehydrogenation Mechanism of Ethanol on Co(111) Surface: A First-principles Study [J]. Acta Chim. Sinica, 2019, 77(6): 559-568. |
[14] | Li Huabo, Cui Yuanyuan, Liu Yixin, Dai Wei-Lin. Promotional Effect of Cr on Cu/SiO2 Catalyst for the Production of Methanol from Carbonate Hydrogenation [J]. Acta Chim. Sinica, 2019, 77(4): 371-378. |
[15] | Wei Simin, Wang Yinghui, Zhao Hongmei. Study on the Mechanism of Frustrated Lewis Pairs Catalysed Hydrogenation of 2,3-Disubstituted 2H-1,4-Benzoxazine [J]. Acta Chimica Sinica, 2019, 77(3): 278-286. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||