Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (1): 75-102.DOI: 10.6023/A23110507 Previous Articles    

Review

碳碳键链接的二维共价有机框架研究进展

魏颖, 王家成, 李玥, 汪涛, 马述威, 解令海*()   

  1. 分子系统与有机器件研究中心(CMSOD) 信息材料与纳米技术研究院 有机电子与信息显示国家重点实验室(IAM) 南京邮电大学 南京 210023
  • 投稿日期:2023-11-21 发布日期:2023-12-19
  • 作者简介:

    魏颖, 南京邮电大学材料科学与工程学院副研究员、硕士生导师. 2005至2009年就读于吉林化工学院, 获得学士学位. 2009至2014年就读于东北师范大学化学学院, 获得博士学位. 主要研究方向为有机方法学以及有机/聚合物光电材料的合成及其性能.

    解令海, 南京邮电大学信息材料与纳米技术研究院/材料科学与工程学院、博士生导师, 国家百千万人才工程人选, 享受国务院政府特殊津贴. 2000年和2003年分别获得东北师范大学学士学位和汕头大学硕士学位. 2003至2006年就读于复旦大学先进材料研究院, 获得博士学位. 长期从事第四代与智能半导体研发, 柔性电子, 化学智能与智能化学, 人工智能化学家等未来领域的基础研究.

  • 基金资助:
    国家自然科学基金(22071112); 国家自然科学基金(22275098); 有机电子与信息显示国家重点实验室资助项目(GDX2022010005)

Research Progress of Carbon-carbon Bond Linked Two-dimensional Covalent-Organic Frameworks

Ying Wei, Jiacheng Wang, Yue Li, Tao Wang, Shuwei Ma, Linghai Xie()   

  1. Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, Nanjing 210023, China
  • Received:2023-11-21 Published:2023-12-19
  • Contact: E-mail: iamlhxie@njupt.edu.cn
  • Supported by:
    National Natural Science Foundation of China(22071112); National Natural Science Foundation of China(22275098); Project of State Key Laboratory of Organic Electronics and Information Displays, Nanjing University of Posts and Telecommunications(GDX2022010005)

Two-dimensional polymers (2DPs) are a type of planar polymer materials that possess regular porous structures. They fulfill the demand for thin, high-performing, and stable materials in flexible devices, making them highly potential candidates for applications in the field of flexible electronics. As a special class of covalent two-dimensional polymer materials, two-dimensional covalent organic frameworks (COFs) refer to crystalline porous materials with a two-dimensional topology formed by connecting π-conjugated building units through covalent bonds. The unique electronic structure of COFs gives them better electrical properties compared to other two-dimensional polymers. Furthermore, their unique periodic porous structure, high specific surface area, and excellent stability make them highly suitable for various applications such as ion transport, optoelectronic materials, and catalysis. Among these, carbon-carbon bond-linked COFs are regarded as one of the most promising types of two-dimensional polymers due to their excellent stability and good crystallinity. In recent years, many carbon-carbon bonded COFs with different structures and excellent properties have emerged based on different design principles and synthesis strategies. In this review, we summarize and introduce four common synthesis methods for preparing C=C bonded COFs, namely solvent-thermal method, melt-polymerization method, interface polymerization method, and copper template method. Furthermore, we categorize C=C bonded COFs into four classes: [C2+C3], [C2+C2], [C3+C3], and [C4+C2], according to the topological structure of the building units. We focus on analyzing the relationship between the composite structure of these COFs and their stability, electrical properties, catalytic performance, and other properties. Additionally, we compile and summarize the research progress of C=C bonded COFs in terms of synthesis methods, structural innovation, performance improvement, and practical applications. This compilation will be beneficial for researchers in the subsequent studies of C=C bonded COFs to select building units based on target structure and performance application and conduct pre-design. Furthermore, this review also includes previously overlooked C—C bonded COFs, providing a more comprehensive reference. In summary, this review aims to provide guidance for researchers in related fields to better design and synthesize multifunctional crystalline porous materials, thereby promoting the further development and application of carbon-carbon bond-linked COFs in various fields.

Key words: two-dimensional polymers, two-dimensional covalent polymers, covalent-organic frameworks, carbon-carbon bond linkage, porous crystalline materials