Acta Chimica Sinica ›› 2024, Vol. 82 ›› Issue (1): 62-74.DOI: 10.6023/A23080392 Previous Articles Next Articles
Review
林航青a, 马若茹a, 江怡蓝a, 许木榕a, 林洋彭a,b,*(), 杜克钊a,*()
投稿日期:
2023-08-27
发布日期:
2023-10-31
作者简介:
林航青, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生. |
马若茹, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生. |
江怡蓝, 就读于福建师范大学化学与材料学院, 2020级应用化学专业本科生. |
许木榕, 就读于福建师范大学化学与材料学院, 2022级化学教育专业本科生. |
林洋彭(1995-), 2023年6月于福建师范大学获得理学博士学位, 同年10月入职厦门市环境科学研究院, 主要研究方向为金属卤化物的设计及应用研究. 至今以第一作者身份在J. Phys. Chem. Lett., Chem. Eng. J., Energy Environ. Mater.等期刊发表6篇SCI论文, 以合作者身份在Angew. Chem. Int. Ed., Nano Lett., Adv. Funct. Mater.等期刊发表15篇SCI论文, 授权中国发明专利两项. |
杜克钊, 2013年博士毕业于中国科学院大学福建物质结构研究所, 相继在新加坡南洋理工大学和美国杜克大学开展博士后研究, 于2018年入职福建师范大学, 主要研究金属卤化物晶态材料的构效关系, 已在J. Am. Chem. Soc., Angew. Chem. Int. Ed.等国际期刊上发表SCI论文90篇左右, 授权专利3项, h-index 29. 主持(含结题)国家基金三项, 获“闽江学者”特聘教授和福建省杰青项目等省部级项目资助. |
基金资助:
Hangqing Lina, Ruoru Maa, Yilan Jianga, Murong Xua, Yangpeng Lina,b(), Kezhao Dua()
Received:
2023-08-27
Published:
2023-10-31
Contact:
E-mail: About author:
Supported by:
Share
Hangqing Lin, Ruoru Ma, Yilan Jiang, Murong Xu, Yangpeng Lin, Kezhao Du. Research Progress of Materials Used for Elemental Halogen Capture[J]. Acta Chimica Sinica, 2024, 82(1): 62-74.
吸附 单质 | 材料类别 | 材料名称 | 分解 温度/℃ | 释放卤素 温度/℃ | 最大捕获量/ (g•g-1) | 释放 效率/% | 储存方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Cl2 | MOF | Co2Cl2X2BTDD | 400 | 275 | 0.140a | ≈80 | 化学储存 | [ |
MHP | Cs2PbCl6 | 300 | 300 | 0.111a | ≈100 | 化学储存 | [ | |
MHP | Rb2PbCl6 | 350 | 350 | 0.136a | ≈100 | 化学储存 | [ | |
MHP | (NH4)2PbCl6 | 320 | 320 | 0.190a | ≈100 | 化学储存 | [ | |
MHP | Cs4Sb2Cl12 | 240 | 240 | 0.0627a | ≈100 | 化学储存 | [ | |
Br2 | MOF | Co2Cl2X2BTDD | 400 | 195 | 0.260a | ≈80 | 化学储存 | [ |
FMOF | PCN-605-H | N.A.b | 室温 | 4.2 | ≈20 | 物理储存 | [ | |
FMOF | PCN606-OMe | N.A. | 室温 | 3.7 | ≈20 | 物理储存 | [ | |
FMOF | PCN-700 | N.A. | 室温 | 2.6 | ≈20 | 物理储存 | [ | |
POP | C4P-POP | 295 | N.A. | 3.6 | ≈100 | 化学储存 | [ | |
MHP | Cs2PdBr6 | 340 | 340 | 0.232a | ≈100 | 化学储存 | [ | |
MHP | Cs4Sb2Br12 | 265 | 265 | 0.103a | ≈100 | 化学储存 | [ | |
MHP | Rb4Sb2Br12 | 225 | 225 | 0.115a | ≈100 | 化学储存 | [ | |
多卤晶体 | CsBr3 | 181 | 181 | 0.751a | ≈100 | 化学储存 | [ | |
多卤晶体 | Et4NBr3 | N.A. | N.A. | N.A. | 0 | 化学储存 | [ | |
多卤晶体 | Bu4NBr3 | N.A. | N.A. | N.A. | 0 | 化学储存 | [ | |
POC | CC3-R | N.A. | >100~200 | 1.761a | >70 | 化学储存 | [ | |
POC | FT-RCC3 | N.A. | N.A. | 1.860a | <10 | 化学储存 | [ | |
树脂聚合物 | RF NPs | N.A. | N.A. | 7.441 | 0 | 化学储存 | [ |
吸附 单质 | 材料类别 | 材料名称 | 分解 温度/℃ | 释放卤素 温度/℃ | 最大捕获量/ (g•g-1) | 释放 效率/% | 储存方式 | 参考文献 |
---|---|---|---|---|---|---|---|---|
Cl2 | MOF | Co2Cl2X2BTDD | 400 | 275 | 0.140a | ≈80 | 化学储存 | [ |
MHP | Cs2PbCl6 | 300 | 300 | 0.111a | ≈100 | 化学储存 | [ | |
MHP | Rb2PbCl6 | 350 | 350 | 0.136a | ≈100 | 化学储存 | [ | |
MHP | (NH4)2PbCl6 | 320 | 320 | 0.190a | ≈100 | 化学储存 | [ | |
MHP | Cs4Sb2Cl12 | 240 | 240 | 0.0627a | ≈100 | 化学储存 | [ | |
Br2 | MOF | Co2Cl2X2BTDD | 400 | 195 | 0.260a | ≈80 | 化学储存 | [ |
FMOF | PCN-605-H | N.A.b | 室温 | 4.2 | ≈20 | 物理储存 | [ | |
FMOF | PCN606-OMe | N.A. | 室温 | 3.7 | ≈20 | 物理储存 | [ | |
FMOF | PCN-700 | N.A. | 室温 | 2.6 | ≈20 | 物理储存 | [ | |
POP | C4P-POP | 295 | N.A. | 3.6 | ≈100 | 化学储存 | [ | |
MHP | Cs2PdBr6 | 340 | 340 | 0.232a | ≈100 | 化学储存 | [ | |
MHP | Cs4Sb2Br12 | 265 | 265 | 0.103a | ≈100 | 化学储存 | [ | |
MHP | Rb4Sb2Br12 | 225 | 225 | 0.115a | ≈100 | 化学储存 | [ | |
多卤晶体 | CsBr3 | 181 | 181 | 0.751a | ≈100 | 化学储存 | [ | |
多卤晶体 | Et4NBr3 | N.A. | N.A. | N.A. | 0 | 化学储存 | [ | |
多卤晶体 | Bu4NBr3 | N.A. | N.A. | N.A. | 0 | 化学储存 | [ | |
POC | CC3-R | N.A. | >100~200 | 1.761a | >70 | 化学储存 | [ | |
POC | FT-RCC3 | N.A. | N.A. | 1.860a | <10 | 化学储存 | [ | |
树脂聚合物 | RF NPs | N.A. | N.A. | 7.441 | 0 | 化学储存 | [ |
[1] |
Jaccaud, M.; Faron, R.; Devilliers, D.; Romano, R.; Riedel, S.; Pernice, H. In Ullmann's Encyclopedia of Industrial Chemistry, https://doi.org/10.1002/14356007.a11_293.pub2, Wiley online library, 2020, pp. 1-19.
|
[2] |
The Essential Chemical Industry-online, http://www.essential-chemicalindustry.org/chemicals/bromine.html (accessed september 20, 2023)
|
[3] |
U.S. Department of the Interior U.S. Geological Survey; Mineral Commodity Summaries 2023, 2023, pp. 48-49, 90-91.
|
[4] |
The Essential Chemical Industry-online, http://www.essentialchemical-industry.org/chemicals/iodine.html (accessed september 20, 2023)
|
[5] |
Niu, Y.-S. Ph.D. Dissertation, University of Chinese Academy of Sciences (Chinese Academy of Sciences Shanghai Institute of Applied Physics), Shanghai, 2022. (in Chinese)
|
(牛永生, 博士论文, 中国科学院大学中国科学院上海应用物理研究所, 上海, 2022.)
|
|
[6] |
Finlayson-Pitts, B. J. Nat. Chem. 2013, 5, 724.
doi: 10.1038/nchem.1717 pmid: 23881506 |
[7] |
Saikia, I.; Borah, A. J.; Phukan, P. Chem. Rev. 2016, 116, 6837.
doi: 10.1021/acs.chemrev.5b00400 |
[8] |
Braff, W. A.; Bazant, M. Z.; Buie, C. R. Nat. Commun. 2013, 4, 2346
doi: 10.1038/ncomms3346 |
[9] |
Lee, J.-H.; Byun, Y.; Jeong, G. H.; Choi, C.; Kwen, J.; Kim, R.; Kim, I. H.; Kim, S. O.; Kim, H.-T. Adv. Mater. 2019, 31, 1970366.
doi: 10.1002/adma.v31.52 |
[10] |
Huang, Y.; Xu, Y.; Xu, M.; Zhao, X.; Chen, M. Fronts Endocrinol. 2023, 14, 1150036.
|
[11] |
Jost, G.; Pietsch, H.; Lengsfeld, P.; Hütter, J.; Sieber, M. A. Invest. Radiol. 2010, 45, 255.
doi: 10.1097/RLI.0b013e3181d4a036 |
[12] |
Glotz, G.; Lebl, R.; Dallinger, D.; Kappe, C. O. Angew. Chem. Int. Ed. 2017, 56, 13786.
doi: 10.1002/anie.v56.44 |
[13] |
Barrett, A. M.; Adams, P. J. Risk Anal. 2011, 31, 1243.
doi: 10.1111/risk.2011.31.issue-8 |
[14] |
Chengdu, Puritong, Sohu News 2023,. (in Chinese)
|
(成都普瑞通, 搜狐新闻, https://www.sohu.com/a/668655838_120723576)
|
|
[15] |
Jinshan District Emergency Management Bureau, Sohu News 2022, https://www.sohu.com/a/569261555_121117454. (in Chinese)
|
(金山区应急管理局, 搜狐新闻, https://www.sohu.com/a/569261555_121117454)
|
|
[16] |
Zhang, D.-Q.; Xia, D.-F. China Salt Ind. 2016, (03), 47. (in Chinese)
|
(张德强, 夏德富, 中国盐业, 2016, (03), 47.)
|
|
[17] |
Yang, M. Jiangsu Salt Sci. Technol. 2006, (04), 13. (in Chinese)
|
(杨梅, 苏盐科技, 2006, (04), 13.)
|
|
[18] |
Lu, Y.; Yuan, J.; Du, D.; Sun, B.; Yi, X. GeoSus 2021, 2, 95.
|
[19] |
Xiao, W.-Q. M.S. Thesis, Taiyuan university of technology, Taiyuan, 2010. (in Chinese)
|
(肖卫强, 硕士论文, 太原理工大学,太原, 2010.)
|
|
[20] |
Fan, L.-W. M.S. Thesis, Soochow University, Suzhou, 2016. (in Chinese)
|
(范丽巍, 硕士论文, 苏州大学, 苏州, 2016.)
|
|
[21] |
Miao, J.-K.; Leng, K.-L.; Xu, Y.; Sun, W.-H.; Xing, L.-H. Inorg. Chem. Ind. 2010, 42, 54. (in Chinese)
|
(苗钧魁, 冷凯良, 许洋, 孙伟红, 邢丽红, 无机盐工业, 2010, 42, 54.)
|
|
[22] |
Slater, A. G.; Cooper, A. I. Science 2015, 348, aaa8075.
|
[23] |
Li, X.; Chen, K.; Guo, R.; Wei, Z. Chem. Rev. 2023, 123, 10432.
doi: 10.1021/acs.chemrev.3c00248 |
[24] |
Jin, E.; Asada, M.; Xu, Q.; Dalapati, S.; Addicoat, M. A.; Brady, M. A.; Xu, H.; Nakamura, T.; Heine, T.; Chen, Q.; Jiang, D. Science 2017, 357, 673.
doi: 10.1126/science.aan0202 |
[25] |
Song, K. S.; Fritz, P. W.; Coskun, A. Chem. Soc. Rev. 2022, 51, 9831.
doi: 10.1039/D2CS00727D |
[26] |
Yang, X.; Ullah, Z.; Stoddart, J. F.; Yavuz, C. T. Chem. Rev. 2023, 123, 4602.
doi: 10.1021/acs.chemrev.2c00667 |
[27] |
Su, K.; Wang, W.; Du, S.; Ji, C.; Yuan, D. Nat. Commun. 2021, 12, 3703.
doi: 10.1038/s41467-021-24042-7 |
[28] |
Tulchinsky, Y.; Hendon, C. H.; Lomachenko, K. A.; Borfecchia, E.; Melot, B. C.; Hudson, M. R.; Tarver, J. D.; Korzyński, M. D.; Stubbs, A. W.; Kagan, J. J.; Lamberti, C.; Brown, C. M.; Dincă, M. J. Am. Chem. Soc. 2017, 139, 5992.
doi: 10.1021/jacs.7b02161 pmid: 28347141 |
[29] |
Lee, S.; Kevlishvili, I.; Kulik, H. J.; Kim, H.-T.; Chung, Y. G.; Koh, D.-Y. J. Mater. Chem. A 2022, 10, 24802.
doi: 10.1039/D2TA05420E |
[30] |
Lin, Y.-P.; Xia, B.; Hu, S.; Zhong, Y.; Huang, Y.-E.; Zhang, Z.-Z.; Wu, N.; Wu, Y.-W.; Wu, X.-H.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. Energy Environ. Mater. 2020, 3, 535.
doi: 10.1002/eem2.v3.4 |
[31] |
Lin, Y.-P.; Xia, B.; Hu, S.; Liu, Z.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Mater. Sci. 2022, 57, 18266.
doi: 10.1007/s10853-022-07745-0 |
[32] |
Lin, Y.-P.; Huang, X.-Y.; Du, K.-Z. Mater. Chem. Phys. 2022, 280, 125820.
doi: 10.1016/j.matchemphys.2022.125820 |
[33] |
Pang, J.; Yuan, S.; Du, D.; Lollar, C.; Zhang, L.; Wu, M.; Yuan, D.; Zhou, H.-C.; Hong, M. Angew. Chem. Int. Ed. 2017, 56, 14622.
doi: 10.1002/anie.v56.46 |
[34] |
Chen, D.; Luo, D.; He, Y.; Tian, J.; Yu, Y.; Wang, H.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 16755.
doi: 10.1021/jacs.2c08327 pmid: 36085555 |
[35] |
Wang, C.; Yang, K.; Xie, Q.; Pan, J.; Jiang, Z.; Yang, H.; Zhang, Y.; Wu, Y.; Han, J. Nano Lett. 2023, 23, 2239.
doi: 10.1021/acs.nanolett.2c04877 |
[36] |
Kurisingal, J. F.; Yun, H.; Hong, C. S. J. Hazard. Mater. 2023, 458, 131835.
doi: 10.1016/j.jhazmat.2023.131835 |
[37] |
Pan, T.; Yang, K.; Dong, X.; Han, Y. J. Mater. Chem. A 2023, 11, 5460.
doi: 10.1039/D2TA09448G |
[38] |
Hu, R.; Zhang, X.; Chi, K.-N.; Yang, T.; Yang, Y.-H. ACS Appl. Mater. Interfaces 2020, 12, 30770.
doi: 10.1021/acsami.0c06291 |
[39] |
Song, W.; Zhang, Y.; Tran, C. H.; Choi, H. K.; Yu, D.-G.; Kim, I. Prog. Polym. Sci. 2023, 142, 101691.
doi: 10.1016/j.progpolymsci.2023.101691 |
[40] |
Zhang, Z.; Jia, J.; Zhi, Y.; Ma, S.; Liu, X. Chem. Soc. Rev. 2022, 51, 2444.
doi: 10.1039/D1CS00808K |
[41] |
Geng, K.; He, T.; Liu, R.; Dalapati, S.; Tan, K. T.; Li, Z.; Tao, S.; Gong, Y.; Jiang, Q.; Jiang, D. Chem. Rev. 2020, 120, 8814.
doi: 10.1021/acs.chemrev.9b00550 |
[42] |
Qian, Z.; Wang, Z. J.; Zhang, K. A. I. Chem. Mater. 2021, 33, 1909.
doi: 10.1021/acs.chemmater.0c04348 |
[43] |
Xie, L.; Zheng, Z.; Lin, Q.; Zhou, H.; Ji, X.; Sessler, J. L.; Wang, H. Angew. Chem. Int. Ed. 2022, 61, e202113724.
doi: 10.1002/anie.v61.1 |
[44] |
Liu, T.; Zhao, Y.; Song, M.; Pang, X.; Shi, X.; Jia, J.; Chi, L.; Lu, G. J. Am. Chem. Soc. 2023, 145, 2544.
doi: 10.1021/jacs.2c12284 |
[45] |
Zhang, X.; Maddock, J.; Nenoff, T. M.; Denecke, M. A.; Yang, S.; Schröder, M. Chem. Soc. Rev. 2022, 51, 3243.
doi: 10.1039/D0CS01192D |
[46] |
Ma, Y.-C.; Yao, Y.-X.; Fu, Y.; Liu, C.-B.; Hu, B.; Che, G.-B. Prog. Chem. 2023, 35, 1097. (in Chinese)
|
(马云超, 姚宇新, 付跃, 刘春波, 胡波, 车广波, 化学进展, 2023, 35, 1097.)
doi: 10.7536/PC221118 |
|
[47] |
Al-Naddaf, Q.; Rownaghi, A. A.; Rezaei, F. Chem. Eng. J. 2020, 384, 123251.
doi: 10.1016/j.cej.2019.123251 |
[48] |
Lin, Y.; Kong, C.; Zhang, Q.; Chen, L. Adv. Energy Mater. 2017, 7, 1601296.
doi: 10.1002/aenm.v7.4 |
[49] |
Rosen, A. S.; Mian, M. R.; Islamoglu, T.; Chen, H.; Farha, O. K.; Notestein, J. M.; Snurr, R. Q. J. Am. Chem. Soc. 2020, 142, 4317.
doi: 10.1021/jacs.9b12401 |
[50] |
Bloch, E. D.; Queen, W. L.; Chavan, S.; Wheatley, P. S.; Zadrozny, J. M.; Morris, R.; Brown, C. M.; Lamberti, C.; Bordiga, S.; Long, J. R. J. Am. Chem. Soc. 2015, 137, 3466.
doi: 10.1021/ja5132243 pmid: 25710124 |
[51] |
Yang, S.; Sun, J.; Ramirez-Cuesta, A. J.; Callear, S. K.; David, W. I. F.; Anderson, D. P.; Newby, R.; Blake, A. J.; Parker, J. E.; Tang, C. C.; Schröder, M. Nat. Chem. 2012, 4, 887.
doi: 10.1038/nchem.1457 |
[52] |
Rieth, A. J.; Tulchinsky, Y.; Dincă, M. J. Am. Chem. Soc. 2016, 138, 9401.
doi: 10.1021/jacs.6b05723 pmid: 27420652 |
[53] |
DeCoste, J. B.; Browe, M. A.; Wagner, G. W.; Rossin, J. A.; Peterson, G. W. Chem. Commun. 2015, 51, 12474.
doi: 10.1039/C5CC03780H |
[54] |
Britt, D.; Tranchemontagne, D.; Yaghi, O. M. Proc. Natl. Acad. Sci. 2008, 105, 11623.
doi: 10.1073/pnas.0804900105 |
[55] |
Azbell, T. J.; Mandel, R. M.; Lee, J.-H.; Milner, P. J. ACS Appl. Mater. Interfaces 2022, 14, 53928.
doi: 10.1021/acsami.2c17966 |
[56] |
Kresse, G.; Furthmüller, J. Phys. Rev. B 1996, 54, 11169.
doi: 10.1103/physrevb.54.11169 pmid: 9984901 |
[57] |
Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77, 3865.
doi: 10.1103/PhysRevLett.77.3865 pmid: 10062328 |
[58] |
Maughan, A. E.; Ganose, A. M.; Scanlon, D. O.; Neilson, J. R. Chem. Mater. 2019, 31, 1184.
doi: 10.1021/acs.chemmater.8b05036 |
[59] |
Sakai, N.; Haghighirad, A. A.; Filip, M. R.; Nayak, P. K.; Nayak, S.; Ramadan, A.; Wang, Z.; Giustino, F.; Snaith, H. J. J. Am. Chem. Soc. 2017, 139, 6030.
doi: 10.1021/jacs.6b13258 |
[60] |
Zhou, L.; Liao, J.-F.; Huang, Z.-G.; Wang, X.-D.; Xu, Y.-F.; Chen, H.-Y.; Kuang, D.-B.; Su, C.-Y. ACS Energy Lett. 2018, 3, 2613.
doi: 10.1021/acsenergylett.8b01770 |
[61] |
Vargas, B.; Ramos, E.; Pérez-Gutiérrez, E.; Alonso, J. C.; Solis-Ibarra, D. J. Am. Chem. Soc. 2017, 139, 9116.
doi: 10.1021/jacs.7b04119 |
[62] |
Lin, Y.-P.; Hu, S.; Xia, B.; Fan, K.-Q.; Gong, L.-K.; Kong, J.-T.; Huang, X.-Y.; Xiao, Z.; Du, K.-Z. J. Phys. Chem. Lett. 2019, 10, 5219.
doi: 10.1021/acs.jpclett.9b01757 |
[63] |
Yuan, S.; Lu, W.; Chen, Y.-P.; Zhang, Q.; Liu, T.-F.; Feng, D.; Wang, X.; Qin, J.; Zhou, H.-C. J. Am. Chem. Soc. 2015, 137, 3177.
doi: 10.1021/ja512762r |
[64] |
Salai Cheettu Ammal, S.; Ananthavel, S. P.; Venuvanalingam, P. J. Phys. Chem. A 1997, 101, 1155.
doi: 10.1021/jp962452x |
[65] |
Yang, M.; Qiu, F.; M. El-Sayed, E.-S.; Wang, W.; Du, S.; Su, K.; Yuan, D. Chem. Sci. 2021, 12, 13307.
doi: 10.1039/D1SC04531H |
[66] |
Luo, D.; He, Y.; Tian, J.; Sessler, J. L.; Chi, X. J. Am. Chem. Soc. 2022, 144, 113.
doi: 10.1021/jacs.1c11731 |
[67] |
Yoo, S. J.; Evanko, B.; Wang, X.; Romelczyk, M.; Taylor, A.; Ji, X.; Boettcher, S. W.; Stucky, G. D. J. Am. Chem. Soc. 2017, 139, 9985.
doi: 10.1021/jacs.7b04603 |
[68] |
Goodenough, R. D.; Mills, J. F.; Place, J. Environ. Sci. Technol. 1969, 3, 854.
doi: 10.1021/es60032a007 |
[69] |
Sonnenberg, K.; Mann, L.; Redeker, F. A.; Schmidt, B.; Riedel, S. Angew. Chem. Int. Ed. 2020, 59, 5464.
doi: 10.1002/anie.201903197 pmid: 31090163 |
[70] |
Ghalami, Z.; Ghoulipour, V.; Khanchi, A. R. J. Comput. Chem. 2020, 41, 949.
doi: 10.1002/jcc.26142 pmid: 31891419 |
[71] |
Flerlage, H.; Slootweg, J. C. Nat. Rev. Chem. 2023, 7, 593.
doi: 10.1038/s41570-023-00523-9 |
[1] | Yuchun Han, Yilin Wang. Retrospect and Prospect of Long-lasting Antibacterial Materials★ [J]. Acta Chimica Sinica, 2023, 81(9): 1196-1201. |
[2] | Jianchuan Liu, Cuiyan Li, Yaozu Liu, Yujie Wang, Qianrong Fang. Highly-Stable Two-Dimensional Bicarbazole-based sp2-Carbon-conjugated Covalent Organic Framework for Efficient Electrocatalytic Oxygen Reduction★ [J]. Acta Chimica Sinica, 2023, 81(8): 884-890. |
[3] | Ziqi Li, Liwei Liu, Chenghui Mao, Changkai Zhou, Minqi Xia, Zhen Shen, Yue Guo, Qiang Wu, Xizhang Wang, Lijun Yang, Zheng Hu. Cobalt-Substituted Polyoxometalates as Soluble Mediators to Boost the Lithium-Sulfur Battery Performance [J]. Acta Chimica Sinica, 2023, 81(6): 620-626. |
[4] | Kaiqing Wang, Shuo Yuan, Wangdong Xu, Dan Huo, Qiulin Yang, Qingxi Hou, Dehai Yu. Preparation and Adsorption Properties of ZIF-8@B-CNF Composite Aerogel [J]. Acta Chimica Sinica, 2023, 81(6): 604-612. |
[5] | Kanbinuer Nuermaimaiti, Chao Wang, Shiwei Luo, Abudu Rexit Abulikemu. Research on Selective Dehalogenation of α,α,α-Trihalogen (Chloro, Bromo) methyl Ketones Under Electrochemical Conditions [J]. Acta Chimica Sinica, 2023, 81(6): 582-587. |
[6] | Shaojuan Zeng, Xueqi Sun, Yinge Bai, Lu Bai, Shuang Zheng, Xiangping Zhang, Suojiang Zhang. Research Progress of CO2 Capture and Separation by Functionalized Ionic Liquids and Materials★ [J]. Acta Chimica Sinica, 2023, 81(6): 627-645. |
[7] | Zhao Zhenxin, Yao Yikun, Chen Jiajun, Niu Rong, Wang Xiaomin. A High-entropy Phosphate Cathode Host towards High-stability Lithium-sulfur Batteries [J]. Acta Chimica Sinica, 2023, 81(5): 496-501. |
[8] | Jiangmin Jiang, Xinran Zheng, Yating Meng, Wenjie He, Yaxin Chen, Quanchao Zhuang, Jiaren Yuan, Zhicheng Ju, Xiaogang Zhang. Research on the Preparation and Potassium Storage Performance of F, N Co-doped Porous Carbon Nanosheets [J]. Acta Chimica Sinica, 2023, 81(4): 319-327. |
[9] | Wentao Wang, Xinting Lai, Shiquan Yan, Lei Zhu, Yuyuan Yao, Liming Ding. Synergistic Treatment of Dye Wastewater by the Adsorption-Degradation of a Bifunctional Aerogel [J]. Acta Chimica Sinica, 2023, 81(3): 222-230. |
[10] | Bing Zheng, Zhe Wang, Jing He, Jiao Zhang, Wenbo Qi, Mengyuan Zhang, Haitao Yu. Structure and Work Function of Alkaline (Earth) Metal-Bilayer α-Borophene Nanocomposite: A Theoretical Study [J]. Acta Chimica Sinica, 2023, 81(10): 1357-1370. |
[11] | Zhenhua Wang, Cong Ma, Ping Fang, Haichao Xu, Tiansheng Mei. Advances in Organic Electrochemical Synthesis [J]. Acta Chimica Sinica, 2022, 80(8): 1115-1134. |
[12] | Fang Liu, Tingting Pan, Xiurong Ren, Weiren Bao, Jiancheng Wang, Jiangliang Hu. Research on Preparation and Benzene Adsorption Performance of HCDs@MIL-100(Fe) Adsorbents [J]. Acta Chimica Sinica, 2022, 80(7): 879-887. |
[13] | Tiantian Lü, Wen Ma, Dongsun Zhan, Yanmin Zou, Jilong Li, Meiling Feng, Xiaoying Huang. Two New Three-Dimensional Lanthanide Metal-organic Frameworks for the Highly Efficient Removal of Cs+ Ions※ [J]. Acta Chimica Sinica, 2022, 80(5): 640-646. |
[14] | Yaru Wei, Jing Ma, Tingting Yuan, Jiawei Jiang, Yinli Duan, Juanqin Xue. Preparation and Adsorption Properties of Lithium Chloride Intercalation Carbon Nitride [J]. Acta Chimica Sinica, 2022, 80(4): 494-502. |
[15] | Junrui Liu, Jinglin Chen, Jie Yang, Xiaofeng Xu, Ruonan Li, You-Gui Huang, Shaohua Chen, Xin Ye, Wei Wang. K+-Site Ce-Doped Jarosite for Phosphate Adsorption: a Mechanism Study※ [J]. Acta Chimica Sinica, 2022, 80(4): 476-484. |
Viewed | ||||||
Full text |
|
|||||
Abstract |
|
|||||