Acta Chimica Sinica ›› 2025, Vol. 83 ›› Issue (4): 401-414.DOI: 10.6023/A24120376 Previous Articles     Next Articles

Review

多孔材料在超铀元素分离中的应用研究进展

王丽英a,b, 于吉攀b,c,*(), 刘峙嵘a,*(), 石伟群d,*()   

  1. a 东华理工大学 核科学与工程学院 南昌 330013
    b 中国科学院高能物理研究所 核能化学实验室 北京 100049
    c 南开大学 先进能源材料化学教育部重点实验室 天津 300071
    d 上海交通大学 核科学与工程学院 上海 200240
  • 投稿日期:2024-12-20 发布日期:2025-02-14
  • 作者简介:

    王丽英, 2022年6月毕业于南华大学核科学技术学院, 获工学学士学位; 2022年9月至今为东华理工大学和中国科学院高能物理研究所联合培养研究生.

    于吉攀, 副研究员. 2008年获江苏师范大学学士学位; 2011年获南开大学硕士学位; 2014年获清华大学博士学位; 2014年7月至2016年7月清华大学化学系博士后; 2016年7月加入中国科学院高能物理研究所核能放射化学实验室. 目前主要研究方向: 锕系元素化学.

    刘峙嵘, 本科毕业于青岛理工大学, 博士毕业于中国原子能科学研究院. 在国内外学术期刊上发表百余篇学术论文、专利12项; 获省部级奖6项. 先后主持国家自然科学基金面上/地区项目/江西省自然科学基金项目/江西省科技支撑计划项目多项. 国家自然科学基金函评专家、中国博士后科学基金评审专家、中国博士后科学基金特别资助评审专家、教育部留学归国人员科研启动基金评审专家. 中国辐射防护学会环境放射化学分会理事、中国核学会锕系元素物理与化学分会理事、中国核学会核化工分会理事. Journal of Hazardous Materials、Environmental Science & Technology、Applied Surface Science 等国际学术刊物审稿专家.

    石伟群, 上海交通大学特聘教授, 国家杰出青年科学基金获得者, 长期致力于核燃料循环化学相关基础研究. 在JACS、Angew. Chem.、Chem、Chem. Sci.、CCS Chem.、Nat. Commun.、Adv. Mater.等国际知名期刊发表SCI论文300余篇, 成果被国内外同行广泛关注和引用, 文章总引18000余次, H因子67 (Google Scholar), 2019~2023年每年均入选Elsevier中国高被引学者榜单(核科学技术). 分别担任期刊《Supramolecular Materials》副主编, 《Chinese Chemical Letters》、《Journal of Nuclear Fuel Cycle and Waste Technology》、《International Journal of Advanced Nuclear Reactor Design and Technology》和《Journal of Nuclear Science and Technology》的编委与国际顾问编委, 中文期刊《核化学与放射化学》编委. 现为中国核学会锕系物理与化学分会副理事长、中国有色金属学会熔盐化学与技术专业委员会副主任委员、中国化学会核化学与放射化学专业委员会委员、中国核学会核化工分会常务理事兼副秘书长.

  • 基金资助:
    国家自然科学基金(U2067212); 国家自然科学基金(22176191); 国家杰出青年科学基金(21925603)

Advances in Porous Materials for Transuranic Element Separation

Liying Wanga,b, Jipan Yub,c(), Zhirong Liua(), Weiqun Shid()   

  1. a School of Nuclear Science and Engineering, East China University of Technology, Nanchang 330013, China
    b Laboratory of Nuclear Energy Chemistry, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
    c Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Nankai University, Tianjin 300071, China
    d School of Nuclear Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
  • Received:2024-12-20 Published:2025-02-14
  • Contact: E-mail: yujipan@ihep.ac.cn;199760011@ecut.edu.cn;shiwq@sjtu.edu.cn
  • Supported by:
    National Natural Science Foundation of China(U2067212); National Natural Science Foundation of China(22176191); National Science Fund for Distinguished Young Scholars(21925603)

Nuclear energy, recognized as an efficient and stable power source, is poised to play an increasingly significant role in the global energy mix. The reprocessing of spent nuclear fuel is crucial in assessing whether nuclear energy can be deemed a sustainable form of energy. Among the various technologies involved, partitioning-transmutation technology not only reduces the long-term hazards associated with radioactive waste but also mitigates the environmental risks linked to the treatment of nuclear waste. The transuranic elements in high-level liquid waste (HLLW) possess relatively high toxicity and long half-lives. Therefore, the effective separation of transuranic elements from HLLW is a necessary condition and a key technology for separation-transmutation. Among the methods for the separation of actinides, solvent extraction has been widely applied due to its simplicity and low cost. However, this method also presents several challenges, such as the use of toxic or flammable solvents, the formation of emulsions, and the generation of large amounts of secondary organic hazardous waste. In contrast, solid-phase adsorption does not require organic solvents, thereby reducing the volume of solvents and the risk of secondary pollution. Moreover, the adsorption process can be conducted at ambient temperature and pressure, making it simple, low-cost, environmentally friendly, and regenerable. These advantages have contributed to its increasing popularity and research interest in recent years. However, the harsh conditions in HLLW present significant challenges in the development of solid-phase adsorbents. Despite many obstacles, advancements in solid-phase adsorbent materials for transuranic element separation have demonstrated considerable potential within the nuclear energy sector. This article provides a comprehensive analysis of the benefits, challenges, and prospective applications of solid-phase adsorbents. It offers a systematic review of research progress in various solid adsorbents, including inorganic porous materials, carbon-based porous materials, polymer resins, metal-organic frameworks (MOFs), and covalent organic frameworks (COFs), specifically in the context of transuranic element separation. The review investigates their strengths in terms of adsorption performance, selectivity, stability, and regenerability. Additionally, it highlights research challenges such as the complexity of preparation, economic viability, and the scalability of production processes. This thorough analysis is instrumental in the development of more efficient and eco-friendly transuranic element adsorbent materials and in facilitating their integration into practical nuclear energy processing applications.

Key words: porous materials, transuranic element, high-level liquid waste (HLLW), plutonium, neptunium, americium