Review

Research Progress in Metal-Organic Framework and Its Composites for Separation of C2 Based on Sieving Multiple Effects

  • Xufei Li ,
  • Baoyou Yan ,
  • Weiqiu Huang ,
  • Lipei Fu ,
  • Xianhang Sun ,
  • Aihua Lv
Expand
  • a College of Materials Science & Engineering, Changzhou University, Changzhou 213164, China
    b Jiangsu Provincial Key Laboratory of Oil & Gas Storage and Transportation Technology, Changzhou University, Changzhou 213164, China

Received date: 2020-10-27

  Online published: 2020-12-11

Supported by

National Natural Science Foundation of China(51574044); National Natural Science Foundation of China(51804045); and the Key Research and Development Program of Jiangsu Province (Industry Foresight and Common Key Technology)(BE2018065)

Abstract

Fine separation of mixture is the primary importance technology and hot topic in the petrochemical industry. In particular, high-efficiency separation of C2 (C2H2/C2H4 and C2H4/C2H6) is a difficult issue and challenge of the high-quality production in modern chemical process. Traditional heat-driven separation processes (e.g., fine distillation separation and selective catalytic hydrogenation separation) have the shortages of high energy consumption and low economic benefits. On the contrary, the processes with non-thermal driven separations (e.g., adsorptive and membrane-based separations) can greatly overcome these weaknesses. Among these adsorptive separation materials, metal-organic framework (MOF) materials own a huge various library of components/structure units. Their characters of controllable pore structures and adjustable compositions will bring about new opportunities for the high-efficiency refined separations. In this context, the crystals and pore parameters of MOF+ (MOF and its composites) materials in recent years were sorted out and summarized, the researches in the high-efficiency separation of MOF+ materials for C2 were analyzed, and the key issues of the design, controllable preparation, and pore size control mechanism for MOF+ materials were focused on. In addition, the future research trend of MOF+ materials were also put forward.

Cite this article

Xufei Li , Baoyou Yan , Weiqiu Huang , Lipei Fu , Xianhang Sun , Aihua Lv . Research Progress in Metal-Organic Framework and Its Composites for Separation of C2 Based on Sieving Multiple Effects[J]. Acta Chimica Sinica, 2021 , 79(4) : 459 -471 . DOI: 10.6023/A20100494

References

[1]
Zhang, X.; Li, L.B.; Wang, J.X.; Wen, H.M.; Krishna, R.; Wu, H.; Zhou, W.; Chen, Z.N.; Li, B.; Qian, G.D.; Chen, B.L. J. Am. Chem. Soc. 2020, 142,633.
[2]
Li, L.B.; Lin, R.B.; Krishna, R.; Li, H.; Xiang, S.C.; Wu, H.; Li, J.P.; Zhou, W.; Chen, B.L. Science 2018, 362,443.
[3]
Ding, Q.; Zhang, Z.Q.; Yu, C.; Zhang, P.X.; Wang, J.; Cui, X.L.; He, C.H.; Deng, S.G.; Xing, H.B. Sci. Adv. 2020, 6,4322.
[4]
Liu, P.-X.; He, C.-H.; Li, L.-B.; Li, J.-P. CIESC J. 2020, 71,4211. (in Chinese)
[4]
( 刘普旭, 贺朝辉, 李立博, 李晋平, 化工学报, 2020, 71,4211.)
[5]
Zhao, W.-M. Chem. Ind. 2020, 38,10. (in Chinese)
[5]
( 赵文明, 化学工业, 2020, 38,10.)
[6]
Li, Z.-Y.; Wang, H.-Q.; Huang, G.-S.; Ren, W.-P.; Zhang, B.; Wei, S.-X. Chem. Ind. Eng.Pro. 2017, 36,767. (in Chinese)
[6]
( 李振宇, 王红秋, 黄格省, 任文坡, 张博, 魏寿祥, 化工进展, 2017, 36,767.)
[7]
Liao, P.Q.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Nat. Commun. 2015, 6,8697.
[8]
Yang, S.H.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schroder, M. Nat. Chem. 2015, 7,121.
[9]
Sholl, D.S.; Lively, R.P. Nature 2016, 532,435.
[10]
Wang, X.-Q.; Chang, Z.-Y.; Li, L.-B.; Yang, J.-F.; Li, J.-P. Chem. Ind. Eng.Pro. 2017, 39,2218. (in Chinese)
[10]
( 王小青, 常则宇, 李立博, 杨江峰, 李晋平, 化工进展, 2020, 39,2218.)
[11]
Lian, J.H.; Chai, Y.C.; Qi, Y.; Guo, X.Y.; Guan, N.J.; Li, L.D.; Zhang, F.X. Chinese J. Catal. 2020, 41,598.
[12]
Khan, N.A.; Hasan, Z.; Jhung, S.H. Chem. A Eur. J. 2014, 20,338.
[13]
Ren, T.; Patel, M.; Blok, K. Energy 2006, 31,425.
[14]
Bloch, E.D.; Queen, W.L.; Krishna, R.; Zadrozny, J.M.; Brown, C.M.; Long, J.R. Science 2012, 335,1606.
[15]
Zhang, Z.Q.; Peh, S.B.; Wang, Y.X.; Kang, C.J.; Fan, W.D.; Zhao, D. Angew. Chem. Int. Ed. 2020, 59,18927.
[16]
Wang, Y.X.; Peh, S.B.; Zhao, D. Small 2019, 15,1900058.
[17]
Li, X.Y.; Li, Y.Z.; Ma, L.N.; Hou, L.; He, C.Z.; Wang, Y.Y.; Zhu, Z.H. J. Mater. Chem. A 2020, 8,5227.
[18]
Lin, J.Y. S. Science 2016, 353,121.
[19]
Li, J.R.; Sculley, J.; Zhou, H.C. Chem. Rev. 2012, 112,869.
[20]
Yang, L.F.; Qian, S.H.; Wang, X.B.; Cui, X.L.; Chen, B.L.; Xing, H.B. Chem. Soc. Rev. 2020, 49,5359.
[21]
Huang, W.Q.; Xu, J.X.; Tang, B.; Wang, H.N.; Tan, X.B.; Lv, A.H. Adsorpt. Sci. Technol. 2018, 36,888.
[22]
Wang, H.N.; Tang, M.; Zhang, K.; Cai, D.F; Huang, W.Q.; Chen, R.Y.; Yu, C.Z. J. Hazard. Mater. 2014, 268,115.
[23]
Huang, W.Q. Fundamental theory of oil vapour recovery and its application, China Petrochemical Press, Beijing, 2011, pp.244~245. (in Chinese)
[23]
( 黄维秋, 油气回收基础理论及其应用, 中国石化出版社, 北京, 2011, pp.244~245.)
[24]
Bian, Q.-M.; Xin, M.-D.; Zou, H.; Xu, G.-T. Acta Petrol. Sin. (Petro. Proc. Sec.) 2020, 36,866. (in Chinese)
[24]
( 边青敏, 忻睦迪, 邹亢, 徐广通, 石油学报(石油加工), 2020, 36,866.)
[25]
Li, H.L.; Eddaoudi, M.M.; O'keeffe, M.; Yaghi, O.M. Nature 1999, 402,276.
[26]
Li, H.; Li, L.B.; Lin, R.B.; Zhou, W.; Zhang, Z.J.; Xiang, S.C.; Chen, B.L. EnergyChem 2019, 1,100006.
[27]
Zhao, W.P.; Huang, W.Q.; Li, M.L.; Huang, Z.L. Nano 2019, 14,1950100.
[28]
Li, X.-F.; Huang, W.-Q.; Tang, B.; Yu, H.-G.; Huang, S.-L.; Zhao, W.-P. New Chem. Mater. 2020, 48,10. (in Chinese)
[28]
( 李旭飞, 黄维秋, 唐波, 余浩刚, 黄顺林, 赵文蒲, 化工新型材料, 2020, 48,10.)
[29]
Li, X.F.; Tang, B.; Huang, W.Q.; Yu, H.G. Z. Anorg. Allg. Chem. 2019, 645,73.
[30]
Férey, F.; Serre, C.; Mellot-Draznieks, C.; Millange, F.; Surblé, S.; Dutour, J.; Margiolaki, I. Angew. Chem. Int. Ed. 2004, 43,6296.
[31]
Park, K.S.; Ni, Z.; Cote, A.P.; Choi, J.Y.; Huang, R.; Uribe-Romo, F.J.; Chae, H.K.; O'keeffe, M.; Yaghi, O.M. PNAS 2006, 103,10186.
[32]
Bao, Z.B.; Chang, G.G.; Xing, H.B.; Krishna, R.; Ren, Q.L.; Chen, B.L. Energy Environ. Sci. 2016, 9,3612.
[33]
Huang, G.; Chen, Y.-Z.; Jiang, H.-L. Acta Chim. Sinica 2016, 74,113. (in Chinese)
[33]
( 黄刚, 陈玉贞, 江海龙, 化学学报, 2016, 74,113.)
[34]
Zhou, D.D.; Zhang, X.W.; Mo, Z.W.; Xu, Y.Z.; Tian, X.Y.; Li, Y.; Chen, X.M.; Zhang, J.P. EnergyChem 2019, 1,100016.
[35]
Li, D.D.; Xu, H.Q.; Jiao, L.; Jiang, H.L. EnergyChem 2019, 1,100005.
[36]
Li, X.R.; Yang, X.C.; Xue, H.G.; Pang, H.; Xu, Q. EnergyChem 2020, 2,100027.
[37]
Guo, Z.-B.; Zhang, Y.-Y.; Feng, X. Acta Chim. Sinica 2020, 78,397. (in Chinese)
[37]
( 郭振彬, 张媛媛, 冯霄, 化学学报, 2020, 78,397.)
[38]
Park, H.B.; Kamcev, J.; Robeson, L.M.; Elimelech, M.; Freeman, B.D. Science 2017, 356,1138.
[39]
Gu, K.L. J. Chem. Indus. For. Prod. 1999, 4,37. (in Chinese)
[39]
( 古可隆, 林产化工通讯, 1999, 4,37.)
[40]
Liu, Z.-L.; Li, W.; Liu, H.; Zhuang, X.-D.; Li, S. Acta Chim. Sinica 2019, 77,323. (in Chinese)
[40]
( 刘治鲁, 李炜, 刘昊, 庄旭东, 李松, 化学学报, 2019, 77,323.)
[41]
Cai, C.-Z.; Li, L.-F.; Deng, X.-M.; Li, S.-H.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2020, 78,427. (in Chinese)
[41]
( 蔡铖智, 李丽风, 邓小梅, 李树华, 梁红, 乔智威, 化学学报, 2020, 78,427.)
[42]
Yang, W.-Y.; Liang, H.; Qiao, Z.-W. Acta Chim. Sinica 2018, 76,785. (in Chinese)
[42]
( 杨文远, 梁红, 乔智威, 化学学报, 2018, 76,785.)
[43]
Bian, L.; Li, W.; Wei, Z.-Z.; Liu, X.-W.; Li, S. Acta Chim. Sinica 2020, 78,147. (in Chinese)
[43]
( 卞磊, 李炜, 魏振振, 刘晓威, 李松, 化学学报, 2020, 78,147.)
[44]
Xu, H.; Tong, M.-M.; Wu, D.; Xiao, G.; Yang, Q.-Y.; Liu, D.-H.; Zhong, C.-L. Acta Phys.-Chim. Sin. 2015, 31,41. (in Chinese)
[44]
( 许红, 童敏曼, 吴栋, 肖刚, 阳庆元, 刘大欢, 仲崇立, 物理化学学报, 2015, 31,41.)
[45]
Xiang, S.C.; Zhang, Z.J.; Zhao, C.G.; Hong, K.L.; Zhao, X.B.; Ding, D.R.; Xie, M.H.; Wu, C.D.; Das, M.C.; Gill, R.; Thomas, K.M.; Chen, B.L. Nat. Commun. 2011, 2,204.
[46]
Hazra, A.; Jana, S.; Bonakala, S.; Balasubramanian, S.; Maji, T.K. Chem. Commun. 2017, 53,4907.
[47]
Hu, T.L.; Wang, H.L.; Li, B.; Krishna, R.; Wu, H.; Zhou, W.; Zhao, Y.F.; Han, Y.; Wang, X.; Zhu, W.D.; Yao, Z.Z.; Xiang, S.C.; Chen, B.L. Nat. Commun. 2015, 6,7328.
[48]
Zhang, Y.B.; Hu, J.B.; Krishna, R.; Wang, L.Y.; Yang, L.F.; Cui, X.L.; Duttwyler, S.; Xing, H.B. Angew. Chem. Int. Ed. 2020, 59,17664.
[49]
Suo, X.; Cui, X.L.; Yang, L.F.; Xu, N.; Huang, Y.Q.; He, Y.; Dai, S.; Xing, H.B. Adv. Mater. 2020, 32,1907601.
[50]
Cui, X.L.; Chen, K.J.; Xing, H.B.; Yang, Q.W.; Krishna, R.; Bao, Z.B.; Wu, H.; Zhou, W.; Dong, X.L.; Han, Y.; Li, B.; Ren, Q.L.; Zaworotko, M.J.; Chen, B.L. Science 2016, 353,141.
[51]
Li, H.; Li, L.B.; Lin, R.B.; Ramirez, G.; Zhou, W.; Krishna, R.; Zhang, Z.J.; Xiang, S.C.; Chen, B.L. ACS Sustain. Chem. Eng. 2019, 7,4897.
[52]
Li, B.; Cui, X.L.; O'nolan, D.; Wen, H.M.; Jiang, M.D.; Krishna, R.; Wu, H.; Lin, R.B.; Chen, Y.S.; Yuan, D.Q.; Xing, H.B.; Zhou, W.; Ren, Q.L.; Qian, G.D.; Zaworotko, M.J.; Chen, B.L. Adv. Mater. 2017, 29,1704210.
[53]
Zhang, Z.Q.; Cui, X.L.; Yang, L.F.; Cui, J.Y.; Bao, Z.B.; Yang, Q.W.; Xing, H.B. Ind. Eng. Chem. Res. 2018, 57,7266.
[54]
Thompson, J.A.; Blad, C.R.; Brunelli, N.A.; Lydon, M.E.; Jones, C.W.; Nair, S. Chem. Mater. 2012, 24,1930.
[55]
Tu, B.B.; Diestel, L.; Shi, Z.L.; Bandara, W. R. L.N.; Chen, Y.; Lin, W.M.; Zhang, Y.B.; Telfer, S.G.; Li, Q.W. Angew. Chem. Int. Ed. 2019, 58,5348.
[56]
Kitagawa, S.; Kitaura, R.; Noro, S.I. Angew. Chem. Int. Ed. 2004, 43,2334.
[57]
Zhang, J.P.; Zhou, H.L.; Zhou, D.D.; Liao, P.Q.; Chen, X.M. Nat. Sci. Rev. 2018, 5,907.
[58]
Nijem, N.; Wu, H.H.; Canepa, P.; Marti, A.; Balkus, K.J.; Thonhauser, T.; Li, J.; Chabal, Y.J. J. Am. Chem. Soc. 2012, 134,15201.
[59]
Schneemann, A.; Bon, V.; Schwedler, I.; Senkovska, I.; Kaskel, S.; Fischer, R.A. Chem. Soc. Rev. 2014, 43,6062.
[60]
Li, L.B.; Krishna, R.; Wang, Y.; Wang, X.B.; Yang, J.F.; Li, J.P. Eur. J. Inorg. Chem. 2016, 27,4457.
[61]
Dong, Q.B.; Zhang, X.; Liu, S.; Lin, R.B.; Guo, Y.N.; Ma, Y.S.; Yonezu, A.; Krishna, R.; Liu, G.P.; Duan, J.G.; Matsuda, R.; Jin, W.Q.; Chen, B.L. Angew. Chem. Int. Ed. 2020, 59,22756.
[62]
Lin, R.B.; Li, L.; Wu, H.; Arman, H.; Li, B.; Lin, R.G.; Zhou, W.; Chen, B.L. J. Am. Chem. Soc. 2017, 139,8022.
[63]
Wang, J.; Zhang, Y.; Zhang, P.X.; Hu, J.B.; Lin, R.B.; Deng, Q.; Zeng, Z.L.; Xing, H.B.; Deng, S.G.; Chen, B.L. J. Am. Chem. Soc. 2020, 142,9744.
[64]
Wang, Y.; Jia, X.X.; Yang, H.J.; Wang, Y.X.; Chen, X.T.; Hong, A.N.; Li, J.P.; Bu, X.H.; Feng, P.Y. Angew. Chem. Int. Ed. 2020, 59,19027.
[65]
Yuan, Y.; Wang, M.; Zhou, Y.-Q.; Wang, Z.; Wang, J.-X. CIESC J. 2020, 71,429. (in Chinese)
[65]
( 原野, 王明, 周云琪, 王志, 王纪孝, 化工学报, 2020, 71,429.)
[66]
Tian, P.; Wei, Y.X.; Ye, M.; Liu, Z.M. ACS Catal. 2015, 5,1922.
[67]
Liao, P.Q.; Zhu, A.X.; Zhang, W.X.; Zhang, J.P.; Chen, X.M. Nat. Commun. 2015, 6,6350.
[68]
Bao, Z.B.; Wang, J.W.; Zhang, Z.G.; Xing, H.B.; Yang, Q.W.; Yang, Y.W.; Wu, H.; Krishna, R.; Zhou, W.; Chen, B.L.; Ren, Q.L. Angew. Chem. Int. Ed. 2018, 57,16020.
[69]
Lin, R.B.; Li, L.B.; Zhou, H.L.; Wu, H.; He, C.H.; Li, S.; Krishna, R.; Li, J.P.; Zhou, W.; Chen, B.L. Nat. Mater. 2018, 17,1128.
[70]
Chen, Y.; Du, Y.-D.; Wang, Y.; Liu, P.-X.; Li, L.-B.; Li, J.-P. Acta Chim. Sinica 2020, 78,534. (in Chinese)
[70]
( 陈杨, 杜亚丹, 王勇, 刘普旭, 李立博, 李晋平, 化学学报, 2020, 78,534.)
[71]
Qazvini, O.T.; Babarao, R.; Shi, Z.L.; Zhang, Y.B.; Telfer, S.G. J. Am. Chem. Soc. 2019, 141,5014.
[72]
Zeng, H.; Xie, X.J.; Xie, M.; Huang, Y.L.; Luo, D.; Wang, T.; Zhao, Y.F.; Lu, W.G.; Li, D. J. Am. Chem. Soc. 2019, 141,20390.
[73]
Yang, S.H.; Ramirez-Cuesta, A.J.; Newby, R.; Garcia-Sakai, V.; Manuel, P.; Callear, S.K.; Campbell, S.I.; Tang, C.C.; Schröder, M. Nat. Chem. 2015, 7,121.
[74]
Lin, R.B.; Xiang, S.C.; Zhou, W.; Chen, B.L. Chem 2020, 6,337.
[75]
Shi, Y.S.; Liang, B.; Lin, R.B.; Zhang, C.; Chen, B.L. Trends Chem. 2020, 2,254.
[76]
Kitao, T.; Zhang, Y.Y.; Kitagawa, S.; Wang, B.; Uemura, T. Chem. Soc. Rev. 2017, 46,3108.
[77]
Phan, A.; Doonan, C.J.; Uribe-Romo, F.J.; Knobler, C.B.; O'keeffe, M.; Yaghi, O.M. Acc. Chem. Res. 2010, 43,58.
[78]
Bux, H.; Chmelik, C.; Krishna, R.; Caro, J. J. Membr. Sci. 2011, 369,284.
[79]
Morris, W.; Doonan, C.J.; Furukawa, H.; Banerjee, R.; Yaghi, O.M. J. Am. Chem. Soc. 2008, 130,12626.
[80]
Wang, B.; Cote, A.P.; Furukawa, H.; O'keeffe, M.; Yaghi, O.M. Nature 2008, 453,207.
[81]
Qian, S.H.; Xia, L.; Yang, L.F.; Wang, X.B.; Suo, X.; Cui, X.L.; Xing, H.B. J. Membr. Sci. 2020, 611,118329.
[82]
Chen, K.J.; Madden, D.G.; Mukherjee, S.; Pham, T.; Forrest, K.A.; Kumar, A.; Space, B.; Kong, J.; Zhang, Q.Y.; Zaworotko, M.J. Science 2019, 366,241.
[83]
Lee, S.; Oh, S.; Oh, M. Angew. Chem. Int. Ed. 2020, 59,1327.
[84]
Li, M.M.; Qiao, S.; Zheng, Y.L.; Andaloussi, Y.H.; Li, X.; Zhang, Z.J.; Li, A.; Cheng, P.; Ma, S.Q.; Chen, Y. J. Am. Chem. Soc. 2020, 142,6675.
[85]
Li, X.F.; Huang, W.Q.; Liu, X.Q.; Bian, H. J. Solid State Chem. 2019, 278,120890.
[86]
Liu, Y.; Xia, X.-X.; Tan, Y.-Y.; Li, S. Acta Chim. Sinica 2020, 78,250. (in Chinese)
[86]
( 刘洋, 夏潇潇, 谭媛元, 李松, 化学学报, 2020, 78,250.)
[87]
Sun, Y.-H.; Qi, Y.-X.; Shen, Y.; Jing, C.-J.; Chen, X.-X.; Wang, X.-X. Acta Chim. Sinica 2020, 78,147. (in Chinese)
[87]
( 孙延慧, 齐有啸, 申优, 井翠洁, 陈笑笑, 王新星, 化学学报, 2020, 78,147.)
[88]
Sun, Y.F.; Ma, M.; Jiang, L.; Sun, X.H.; Que, M.L.; Tao, C.B.; Wu, Z.T. Ind. Eng. Chem. Res. 2020, 59,13744.
[89]
Lin, R.J.; Ge, L.; Diao, H.; Rudolph, V.; Zhu, Z.H. J. Mater. Chem. A 2016, 4,6084.
Outlines

/