有机化学 ›› 2021, Vol. 41 ›› Issue (7): 2788-2799.DOI: 10.6023/cjoc202101024 上一篇 下一篇
研究论文
杨晓宇a, 柳建林a, 胡方芝a, 孙红梅a, 王亮a,b,*(), 李帅帅a,b,*()
收稿日期:
2021-01-16
修回日期:
2021-03-23
发布日期:
2021-04-12
通讯作者:
王亮, 李帅帅
作者简介:
基金资助:
Xiaoyu Yanga, Jianlin Liua, Fangzhi Hua, Hongmei Suna, Liang Wanga,b(), Shuai-Shuai Lia,b()
Received:
2021-01-16
Revised:
2021-03-23
Published:
2021-04-12
Contact:
Liang Wang, Shuai-Shuai Li
Supported by:
文章分享
以4-羟基香豆素和邻胺基苯甲醛为原料, 高效合成了具有药物活性的3-位邻羟基苯甲酰基单取代的四氢喹啉衍生物. 在乙醇溶剂中, 反应经过克脑文格尔缩合/[1,5]-氢迁移/环化/水解/脱羧这五个串联过程进行. 另外, 还实现了底物控制的多样性合成, 在无催化剂、无溶剂、室温条件下制备了一系列二香豆素内盐.
杨晓宇, 柳建林, 胡方芝, 孙红梅, 王亮, 李帅帅. 4-羟基香豆素在四氢喹啉及二香豆素内盐合成中的应用[J]. 有机化学, 2021, 41(7): 2788-2799.
Xiaoyu Yang, Jianlin Liu, Fangzhi Hu, Hongmei Sun, Liang Wang, Shuai-Shuai Li. Diverse Application of 4-Hydroxycoumarin in the Syntheses of Tetrahydroquinoline and Zwitterionic Biscoumarin Derivatives[J]. Chinese Journal of Organic Chemistry, 2021, 41(7): 2788-2799.
Entrya | Catalyst | Solvent | Yieldb/% | |
---|---|---|---|---|
3a | 4a | |||
1 | Pyrrolidine | EtOH | 30 | 40 |
2 | Piperidine | EtOH | 38 | 38 |
3 | Morpholine | EtOH | 33 | 42 |
4 | Et3N | EtOH | 29 | 36 |
5 | Na2CO3 | EtOH | 36 | 26 |
6 | Morpholine | MeOH | 35 | 38 |
7 | Morpholine | CH3CN | 89 | Trace |
8 | Morpholine | DCE | 93 | Trace |
9 | — | EtOH | 55 | Trace |
10c | Morpholine | EtOH | 35 | 40 |
11d | Morpholine | EtOH | 18 | 30 |
12e | Morpholine | EtOH | 20 | 59 |
13f | Morpholine | EtOH | Trace | 80 |
14f | Morpholine | H2O | Trace | 76 |
Entrya | Catalyst | Solvent | Yieldb/% | |
---|---|---|---|---|
3a | 4a | |||
1 | Pyrrolidine | EtOH | 30 | 40 |
2 | Piperidine | EtOH | 38 | 38 |
3 | Morpholine | EtOH | 33 | 42 |
4 | Et3N | EtOH | 29 | 36 |
5 | Na2CO3 | EtOH | 36 | 26 |
6 | Morpholine | MeOH | 35 | 38 |
7 | Morpholine | CH3CN | 89 | Trace |
8 | Morpholine | DCE | 93 | Trace |
9 | — | EtOH | 55 | Trace |
10c | Morpholine | EtOH | 35 | 40 |
11d | Morpholine | EtOH | 18 | 30 |
12e | Morpholine | EtOH | 20 | 59 |
13f | Morpholine | EtOH | Trace | 80 |
14f | Morpholine | H2O | Trace | 76 |
[1] |
(a) Takemura, T.; Kamo, T.; Sakuno, E.; Hiradate, S.; Fujii, Y. J. Trop. For. Sci. 2013, 25,268.
|
(b) Mangasuli,S. N.; Hosamani,K. M.; Devarajegowda,H. C.; Kurjogi,M. M.; Joshi,S. D. Eur. J. Med. Chem. 2018, 146,747.
doi: 10.1016/j.ejmech.2018.01.025 |
|
(c) Keri,R. S.; Sasidhar,B. S.; Nagaraja,B. M.; Santos,M. A. Eur. J. Med. Chem. 2015, 100,257.
doi: 10.1016/j.ejmech.2015.06.017 |
|
(d) Amin,K. M.; Eissa,A. A.M.; Abou-Seri,S. M.; Awadallah,F. M.; Hassan,G. S. Eur. J. Med. Chem. 2013, 60,187.
doi: 10.1016/j.ejmech.2012.12.004 |
|
(e) Paul, K.; Bindal, S.; Luxami, V. Bioorg. Med. Chem. Lett. 2013, 23,3667.
|
|
(f) Shi, L.; Li, Z.; Cui, X.; Zhu, T.; Pang, X.; Li, L.; Luo, D.; Liu, F.; Zhao, B.; Long, Y.; Zhang, S. Chin. J. Org. Chem. 2020, 40,1598 (in Chinese).
doi: 10.6023/cjoc201911028 |
|
( 时蕾, 李子秋, 崔鑫鑫, 朱挺, 庞晓静, 李龙辉, 罗德福, 刘方芳, 赵冰玉, 龙跃, 张赛扬, 有机化学, 2020, 40,1598.)
|
|
[2] |
For selected recent examples on 4-hydroxycoumarin as synthon, see: (a) Miao, M.; Luo, Y.; Li, H.; Xu, X.; Chen, Z.; Xu, J.; Ren,, H. J. Org. Chem. 2016, 81,5228.
doi: 10.1021/acs.joc.6b00734 |
(b) Chen, Y.; Wang, Y.; Zhong, R.; Li, J. J. Org. Chem. 2020, 85,10638.
doi: 10.1021/acs.joc.0c01207 |
|
(c) Mukherjee, S.; Pramanik, A. ACS Sustainable Chem. Eng. 2020, 8,403.
doi: 10.1021/acssuschemeng.9b05682 |
|
(d) Xu, R.; Li, K.; Wang, J.; Lu, J.; Pan, L.; Zeng, X.; Zhong, G. Chem. Commun. 2020, 56,8404.
doi: 10.1039/D0CC02832K |
|
(e) Sharma, K.; Neog, K.; Gogoi, P. Org. Lett. 2020, 22,73.
doi: 10.1021/acs.orglett.9b03932 |
|
(f) Zhu, F.; Wang, Y.; He, M.; Yan, Z.; Lin, S. Chin. J. Org. Chem. 2019, 39,1175 (in Chinese).
|
|
( 朱福元, 王彦梅, 何明闯, 严兆华, 林森, 有机化学, 2019, 39,1175.)
|
|
(g) Rezaei, R.; Moezzi, F.; Doroodmand,M. M. Chin. Chem. Lett. 2014, 25,183.
doi: 10.1016/j.cclet.2013.10.033 |
|
(h) Chen, Z.; Bi, J.; Su, W. Chin. J. Chem. 2013, 31,507.
doi: 10.1002/cjoc.201201130 |
|
(i) Hamid Reza, S.; Moones, H. Chin. J. Chem. 2009, 27,1795.
doi: 10.1002/cjoc.v27:9 |
|
[3] |
(a) Spadoni, G.; Bedini, A.; Lucarini, S.; Mari, M.; Caignard,D. -H.; Boutin,J. A.; Delagrange, P.; Lucini, V.; Scaglione, F.; Lodola, A.; Zanardi, F.; Pala, D.; Mor, M.; Rivara, S. J. Med. Chem. 2015, 58,7512.
doi: 10.1021/acs.jmedchem.5b01066 |
(b) Ruble,J. C.; Hurd,A. R.; Johnson,T. A.; Sherry,D. A.; Barbachyn,M. R.; Toogood,P. L.; Bundy,G. L.; Graber,D. R.; Kamilar,G. M. J. Am. Chem. Soc. 2009, 131,3991.
doi: 10.1021/ja808014h |
|
(c) Taylor,S. N.; Marrazzo, J.; Batteiger,B. E.; Hook,E. W.; Seña,A. C.; Long, J.; Wierzbicki,M. R.; Kwak, H.; Johnson,S. M.; Lawrence, K.; Mueller, J. N. Engl. J. Med. 2018, 379,1835.
doi: 10.1056/NEJMoa1706988 |
|
(d) Yu, L.; Ding, Q.; Song, C.; Chang, J. Chin. J. Org. Chem. 2021, 41,2507 (in Chinese).
doi: 10.6023/cjoc202101025 |
|
( 余璐璐, 丁群山, 宋传君, 常俊标, 有机化学, 2021, 41,2507.)
|
|
[4] |
For reviews on tetrahydroquinolines, see: (a) Sridharan, V.; Suryavanshi, P.; Menendez,,J. C. Chem. Rev. 2011, 111,7157.
doi: 10.1021/cr100307m |
(b) Muthukrishnan, I.; Sridharan, V.; Menendez,J. C. Chem. Rev. 2019, 119,5057.
doi: 10.1021/acs.chemrev.8b00567 |
|
For representative examples on tetrahydroquinolines, see: (c) Jadhav,A. M.; Pagar,V. V.; Liu,R. -S. Angew. Chem.,Int. Ed. 2012, 51,11809.
doi: 10.1002/anie.201205692 |
|
(d) Zhang, X.; Han, X.; Lu, X. Org. Lett. 2015, 17,3910.
doi: 10.1021/acs.orglett.5b01894 |
|
(e) Leth,L. A.; Glaus, F.; Meazza, M.; Fu, L.; Thøgersen,M. K.; Bitsch,E. A.; Jørgensen,K. A. Angew. Chem.,Int. Ed. 2016, 55,15272.
doi: 10.1002/anie.v55.49 |
|
(f) Bianchini, G.; Ribelles, P.; Becerra, D.; Ramos,M. T.; Menendez,J. C. Org. Chem. Front. 2016, 3,412.
doi: 10.1039/C6QO00037A |
|
(g) Xu,G. -Q.; Li,C. -G.; Liu,M. -Q.; Cao, J.; Luo,Y. -C.; Xu,P. -F. Chem. Commun. 2016, 52,1190.
doi: 10.1039/C5CC08833J |
|
(h) Zhang, Z.; Song, X.; Li, G.; Li, X.; Zheng, D.; Zhao, X.; Miao, H.; Zhang, G.; Liu, L. Chin. Chem. Lett. 2021, 32,1423.
doi: 10.1016/j.cclet.2020.11.001 |
|
(i) Qian,L. F.; Zhou,Y. H.; Zhang, W. Chin. Chem. Lett. 2009, 20,805.
doi: 10.1016/j.cclet.2009.03.006 |
|
(j) Zhang, Z.; Zhang, Q.; Yan, Z.; Liu, Q. J. Org. Chem. 2007, 72,9808.
doi: 10.1021/jo701551f |
|
[5] |
For reviews on hydride transfer reactions, see: (a) Tobisu, M.; Chatani,, N. Angew. Chem.,Int. Ed. 2006, 45,1683.
doi: 10.1002/(ISSN)1521-3773 |
(b) Peng, B.; Maulide, N. Chem.-Eur. J. 2013, 19,13274.
doi: 10.1002/chem.201301522 |
|
(c) Wang, L.; Xiao, J. Adv. Synth. Catal. 2014, 356,1137.
doi: 10.1002/adsc.v356.6 |
|
(d) Pan,S. C. Beilstein J. Org. Chem. 2012, 8,1374.
doi: 10.3762/bjoc.8.159 |
|
(e) Haibach,M. C.; Seidel, D. Angew. Chem.,Int. Ed. 2014, 53,5010.
|
|
(f) Kwon,S. J.; Kim,D. Y. Chem. Rec. 2016, 16,1191.
doi: 10.1002/tcr.201600003 |
|
(g) Xiao, M.; Zhu, S.; Shen, Y.; Wang, L.; Xiao, J. Chin. J. Org. Chem. 2018, 38,328 (in Chinese).
doi: 10.6023/cjoc201708024 |
|
肖明艳, 朱帅, 沈耀滨, 王亮, 肖建, 有机化学, 2018, 38,328.).
|
|
Other representative works on redox-neutral reactions, see:.
|
|
(g) Yang, L.; Wei, L.; Wan,J. -P. Chem. Commun. 2018, 54,7475.
doi: 10.1039/C8CC03514H |
|
(h) Yang, L.; Wan,J. -P. Green Chem. 2020, 22,3074.
doi: 10.1039/D0GC00738B |
|
(i) Huang, H.; Deng, K.; Deng,G. -J. Green Chem. 2020, 22,8243.
doi: 10.1039/D0GC02789H |
|
(j) Xiao, K.; Huang, Y.; Huang, P. Acta Chim. Sinica 2012, 70,1917.
doi: 10.6023/A12080542 |
|
(k)
doi: 10.1002/cjoc.v37.8 |
|
[6] |
For selected examples on electron-withdrawing groups substituted alkenes as hydride acceptors, see: (a) Mahoney,S. J.; Moon,D. T.; Hollinger, J.; Fillion,, E. Tetrahedron Lett. 2009, 50,4706.
doi: 10.1016/j.tetlet.2009.06.007 |
(b) Mori, K.; Kawasaki, T.; Sueoka, S.; Akiyama, T. Org. Lett. 2010, 12,1732.
doi: 10.1021/ol100316k |
|
(c) Mori, K.; Sueoka, S.; Akiyama, T. J. Am. Chem. Soc. 2011, 133,2424.
doi: 10.1021/ja110520p |
|
(d) Jeong,H. I.; Youn,T. H.; Kim,D. Y. Bull. Korean Chem. Soc. 2017, 38,421.
doi: 10.1002/bkcs.2017.38.issue-4 |
|
(e) Briones,J. F.; Basarab,G. S. Chem. Commun. 2016, 52,8541.
doi: 10.1039/C6CC03600G |
|
(f) Yoshida, T.; Mori, K. Chem. Commun. 2017, 53,4319.
doi: 10.1039/C7CC01717K |
|
(g) Yamazaki, S.; Naito, T.; Tatsumi, T.; Kakiuchi, K. ChemistrySelect 2018, 3,4505.
doi: 10.1002/slct.201800447 |
|
[7] |
Representative one-pot reactions for construction of tetrahydroquinoline skeletons, see: (a) Wang,P. -F.; Jiang,C. -H.; Wen, X.; Xu,Q. -L.; Sun,, H. J. Org. Chem. 2015, 80,1155.
doi: 10.1021/jo5026817 |
(b) Bai, G.; Dong, F.; Xu, L.; Liu, Y.; Wang, L.; Li,S. -S. Org. Lett. 2019, 21,6225.
doi: 10.1021/acs.orglett.9b02051 |
|
(c) Chen, C.; Xu, L.; Wang, L.; Li,S. -S. Org. Biomol. Chem. 2018, 16,7109.
doi: 10.1039/C8OB02012D |
|
(d) Li,S. -S.; Lv, X.; Ren, D.; Shao,C. -L.; Liu, Q.; Xiao, J. Chem. Sci. 2018, 9,8253.
doi: 10.1039/C8SC03339K |
|
(e) Yang, X.; Hu, F.; Wang, L.; Xu, L.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267.
doi: 10.1039/D0OB00521E |
|
(f) Shen,Y. -B.; Wang,L. -X.; Sun,Y. -M.; Dong,F. -Y.; Yu, L.; Liu, Q.; Xiao, J. J. Org. Chem. 2020, 85,1915.
doi: 10.1021/acs.joc.9b02606 |
|
(g) Zhu, S.; Chen, C.; Xiao, M.; Yu, L.; Wang, L.; Xiao, J. Green Chem. 2017, 19,5653.
doi: 10.1039/C7GC02353G |
|
(h) Liu, S.; Wang, H.; Wang, B. Org. Biomol. Chem. 2020, 18,8839.
doi: 10.1039/D0OB01887B |
|
[8] |
(a) Li,S. -S.; Zhu, S.; Chen, C.; Duan, K.; Liu, Q.; Xiao, J. Org. Lett. 2019, 21,1058.
doi: 10.1021/acs.orglett.8b04100 |
(b) Li,S. -S.; Zhou, L.; Wang, L.; Zhao, H.; Yu, L.; Xiao, J. Org. Lett. 2018, 20,138.
doi: 10.1021/acs.orglett.7b03492 |
|
(c) Zhu, S.; Chen, C.; Duan, K.; Sun,Y. -M.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,8440.
doi: 10.1021/acs.joc.9b00489 |
|
(d) Lü, X.; Hu, F.; Duan, K.; Li,S. -S.; Liu, Q.; Xiao, J. J. Org. Chem. 2019, 84,1833.
doi: 10.1021/acs.joc.8b02754 |
|
(e) Shi, H.; Xu, L.; Ren, D.; Wang, L.; Guo, W.; Li,S. -S. Org. Biomol. Chem. 2020, 18,4267.
doi: 10.1039/D0OB00521E |
|
(f) Duan, K.; Shi, H.; Wang,L. -X.; Li,S. -S.; Xu L.; Xiao, J. Org. Chem. Front. 2020, 7,2511.
doi: 10.1039/D0QO00658K |
|
(g) Yuan, K.; Dong, F.; Yin, X.; Li,S. -S.; Wang, L.; Xu, L. Org. Chem. Front. 2020, 7,3868.
doi: 10.1039/D0QO00972E |
|
(h) Xing, Y.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Asian J. Org. Chem. 2020, 9,1787.
doi: 10.1002/ajoc.v9.11 |
|
(i) Yang, X.; Wang, L.; Hu, F.; Xu, L.; Li, S.; Li,S. -S. Org. Lett. 2021, 23,358.
doi: 10.1021/acs.orglett.0c03863 |
|
(j) Guo, M.; Dong, F.; Yin, X.; Wang, L.; Li,S. -S. Org. Chem. Front. 2021, 8,2224.
doi: 10.1039/D0QO01622E |
|
[9] |
(a) Chauncey,M. A.; Grundon,M. F.; Rutherford,M. J. J. Chem. Soc.,Chem. Commun. 1988, 0,527.
|
(b) Zhang, K.; Han, H.; Wang, L.; Zhang, Z.; Wang, Q.; Zhang, W.; Bu, Z. Chem. Commun. 2019, 55,13681.
doi: 10.1039/C9CC07114H |
|
[10] |
(a) Musa,M. A.; Cooperwood,J. S.; Khan,M. O.F. Curr. Med. Chem. 2008, 15,2664.
doi: 10.2174/092986708786242877 |
(b) Yu, D.; Suzuki, M.; Xie, L.; Morris-Natschke,S. L.; Lee,K. H. Med. Res. Rev. 2003, 23,322.
doi: 10.1002/(ISSN)1098-1128 |
|
(c) Anand, P.; Singh, B.; Singh, N. Bioorg. Med. Chem. 2012, 20,1175.
doi: 10.1016/j.bmc.2011.12.042 |
|
(d) Saeed, A.; Haroon, M.; Muhammad, F.; Larik,F. A.; Hesham,E. S.; Channar,P. A. J. Organomet. Chem. 2017, 834,88.
doi: 10.1016/j.jorganchem.2017.02.016 |
|
(e) Khan,K. M.; Iqbal, S.; Lodhi,M. A.; Maharvi,G. M.; Ullah, Z.; Choudhary,M. I.; Rahman, A.; Perveen, S. Bioorg. Med. Chem. 2004, 12,1963.
|
|
[11] |
(a) Bavandia, H.; Habibia, Z.; Yousefi, M. Bioorg. Chem. 2020, 103,104139.
doi: 10.1016/j.bioorg.2020.104139 |
(b) Zeynizadeh, B.; Gilanizadeh, M. New J. Chem. 2019, 43,18794.
doi: 10.1039/C9NJ04718B |
|
(c) Mathavan, S.; Kannan, K.; Yamajala,R. B.R.D. Org. Biomol. Chem. 2019, 17,9620.
doi: 10.1039/C9OB02090J |
|
(d) Yang, C.; Su,W. -Q.; Xu,D. -Z. RSC Adv. 2016, 6,99656.
doi: 10.1039/C6RA23018K |
[1] | 余璐璐, 丁群山, 宋传君, 常俊标. (–)-Angustureine的对映选择性合成[J]. 有机化学, 2021, 41(6): 2507-2510. |
[2] | 许招会, 叶华涛, 张文峰, 肖强. 酒石酸催化四组分反应合成双螺环四氢喹啉双(1,3-二噁烷-4,6-二酮)衍生物[J]. 有机化学, 2021, 41(5): 2127-2133. |
[3] | 孙婉婉, 毛玉健, 蒋静, 余靓, 陈凌云, 胡延维, 张士磊. 由氨茴内酐合成12H-色烯[2,3-b]喹啉-12-酮和6H-色烯[4,3-b]喹啉-6-酮[J]. 有机化学, 2019, 39(9): 2525-2533. |
[4] | 陈晓玲, 陈静雯, 鲍宗必, 杨启炜, 杨亦文, 任其龙, 张治国. MIL-101(Cr)-SO3H催化2-取代喹啉衍生物转移氢化反应的研究[J]. 有机化学, 2019, 39(6): 1681-1687. |
[5] | 朱福元, 王彦梅, 何明闯, 严兆华, 林森. 四丁基碘化铵促进芳基磺酰肼和4-羟基香豆素的硫醚化反应[J]. 有机化学, 2019, 39(4): 1175-1180. |
[6] | 张晓鸣, 雷鹏, 李欣潞, 杨新玲, 张学博, 孙腾达, 凌云. 新型含硫羰基结构的Aspernigerin衍生物的合成及抑菌活性研究[J]. 有机化学, 2018, 38(12): 3197-3203. |
[7] | 王道林, 杨菲菲, 刘忠, 董哲, 赵伟. 香豆素并[4,3-b]吡喃-4-酮类衍生物的有效合成方法[J]. 有机化学, 2014, 34(1): 204-209. |
[8] | 吴清来, 李永强, 杨新玲, 凌云. Aspernigerin的简便全合成及生物活性研究[J]. 有机化学, 2012, 32(08): 1498-1502. |
[9] | 吴清来, 李永强, 杨新玲, 凌云. Aspernigerin 类似物的合成及生物活性研究[J]. 有机化学, 2012, 32(04): 747-754. |
[10] | 张圣领, 黄志纾, 古练权. 苯并噁唑[3,2-a]吡啶盐两性离子化合物的合成[J]. 有机化学, 2010, 30(06): 933-936. |
[11] | 周建峰, 贡桂霞, 安礼涛, 孙小军, 朱凤霞. 微波辐射下氨磺酸催化水相合成3,3-亚芳基双(4-羟基香豆素)[J]. 有机化学, 2009, 29(12): 1988-1991. |
[12] | 高文涛* ; 侯文端 ; 郑美茹. 4-羟基香豆素及其衍生物的简便合成及其荧光性质的研究[J]. 有机化学, 2008, 28(11): 2011-2015. |
[13] | 张圣领 , 黄志纾 , 古练权b. 2,3-二取代-1,4-萘醌的合成[J]. 有机化学, 2008, 28(08): 1467-1470. |
[14] | 蒋虹,屠树江,冯友建,朱松磊李团结,章晓镜,史达清. 微波辐射下“一锅煮”法合成9-芳基-1,8-二氧代9-H-二苯并[c,h]-2,7,10-三氧杂蒽[J]. 有机化学, 2006, 26(05): 715-717. |
[15] | 王香善,曾兆森,史达清,魏贤勇,宗志敏. KF/Al2O3催化下2-氨基-4-芳基-4H-吡喃并[3,2-c]香豆素衍生物的一步合成[J]. 有机化学, 2005, 25(9): 1138-1141. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||