有机化学 ›› 2022, Vol. 42 ›› Issue (2): 498-506.DOI: 10.6023/cjoc202109003 上一篇 下一篇
研究论文
马艳楠a, 刘雅妮a, 王金艳a, 陈西同a, 尹昊a, 迟巧娜b, 贾世玺b, 杜姗姗b,c, 齐昀坤a,c,*(), 王克威a,c
收稿日期:
2021-09-01
修回日期:
2021-09-21
发布日期:
2022-02-24
通讯作者:
齐昀坤
作者简介:
基金资助:
Yannan Maa, Ya'ni Liua, Jinyan Wanga, Xitong Chena, Hao Yina, Qiaona Chib, Shixi Jiab, Shanshan Dub,c, Yunkun Qia,c(), Kewei Wanga,c
Received:
2021-09-01
Revised:
2021-09-21
Published:
2022-02-24
Contact:
Yunkun Qi
About author:
Supported by:
文章分享
偶联试剂介导酰胺键形成, 在固相多肽合成中发挥关键作用. 新型DIC (N,N-二异丙基碳二亚胺)/Oxyma (2-肟氰乙酸乙酯)缩合体系具有廉价、操作安全、缩合效率高和抑制消旋等优势, 在手动和自动多肽合成中得到广泛应用. 但是, DIC/Oxyma缩合体系的理想反应比例和温和反应温度尚有待探索. Piezo通道是一种多功能的机械敏感阳离子通道, 与多种遗传性疾病相关, 蜘蛛毒素多肽GsMTx4是目前唯一的特异性靶向Piezo通道的抑制剂. 本研究探索了DIC/Oxyma缩合体系在温和条件下的最佳反应比例, 实现了线性GsMTx4的高效手动固相合成. 通过一次氧化折叠策略构建三对二硫键, 得到活性的GsMTx4. 利用圆二色谱和膜片钳技术等评价GsMTx4的结构和活性. 本工作建立了基于DIC/Oxyma缩合体系的快速、稳健和安全的合成方法, 为固相多肽合成特别是手动固相多肽合成提供了重要方法参考.
马艳楠, 刘雅妮, 王金艳, 陈西同, 尹昊, 迟巧娜, 贾世玺, 杜姗姗, 齐昀坤, 王克威. 基于DIC/Oxyma的蜘蛛毒素多肽GsMTx4的高效合成及活性评价[J]. 有机化学, 2022, 42(2): 498-506.
Yannan Ma, Ya'ni Liu, Jinyan Wang, Xitong Chen, Hao Yin, Qiaona Chi, Shixi Jia, Shanshan Du, Yunkun Qi, Kewei Wang. DIC/Oxyma Based Efficient Synthesis and Activity Evaluation of Spider Peptide Toxin GsMTx4[J]. Chinese Journal of Organic Chemistry, 2022, 42(2): 498-506.
Linear peptide | Reaction molar ratio | Reaction temperature/℃ | HPLC purity/% | Isolated yield/% | Yield/mg |
---|---|---|---|---|---|
GsMTx4-1 | n(Aa)∶n(HCTU)∶n(DIEA)=4∶3.8∶8 | 28 | 51 | 18 | 37 |
GsMTx4-2 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶8∶4 | 50 | 46 | 16 | 33 |
GsMTx4-3 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶12∶4 | 50 | 41 | 14 | 29 |
GsMTx4-4 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶4∶8 | 50 | 37 | 12 | 25 |
Linear peptide | Reaction molar ratio | Reaction temperature/℃ | HPLC purity/% | Isolated yield/% | Yield/mg |
---|---|---|---|---|---|
GsMTx4-1 | n(Aa)∶n(HCTU)∶n(DIEA)=4∶3.8∶8 | 28 | 51 | 18 | 37 |
GsMTx4-2 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶8∶4 | 50 | 46 | 16 | 33 |
GsMTx4-3 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶12∶4 | 50 | 41 | 14 | 29 |
GsMTx4-4 | n(Aa)∶n(DIC)∶n(Oxyma)=4∶4∶8 | 50 | 37 | 12 | 25 |
Linear peptide | Folding product | HPLC purity/% | Isolated yield/% | Yield/mg | Calculated mass | Observed mass |
---|---|---|---|---|---|---|
GsMTx4-1 | GsMTx4-5 | 51 | 28 | 8.4 | 4095.90 | 4094.93 |
GsMTx4-2 | GsMTx4-6 | 45 | 24 | 7.2 | 4095.90 | 4094.93 |
GsMTx4-3 | GsMTx4-7 | 46 | 25 | 7.5 | 4095.90 | 4095.32 |
GsMTx4-4 | GsMTx4-8 | 45 | 25 | 7.5 | 4095.90 | 4094.94 |
Linear peptide | Folding product | HPLC purity/% | Isolated yield/% | Yield/mg | Calculated mass | Observed mass |
---|---|---|---|---|---|---|
GsMTx4-1 | GsMTx4-5 | 51 | 28 | 8.4 | 4095.90 | 4094.93 |
GsMTx4-2 | GsMTx4-6 | 45 | 24 | 7.2 | 4095.90 | 4094.93 |
GsMTx4-3 | GsMTx4-7 | 46 | 25 | 7.5 | 4095.90 | 4095.32 |
GsMTx4-4 | GsMTx4-8 | 45 | 25 | 7.5 | 4095.90 | 4094.94 |
[1] |
(a) Liu, T.; Xu, S. L.; Zhao, J. F. Chin. J. Org. Chem. 2021, 41, 873. (in Chinese)
doi: 10.6023/cjoc202011022 pmid: 26745345 |
( 刘涛, 许泗林, 赵军锋, 有机化学, 2021, 41, 873.)
doi: 10.6023/cjoc202011022 pmid: 26745345 |
|
(b) Luan, X.; Wu, Y.; Shen, Y. W.; Zhang, H.; Zhou, Y. D.; Chen, H. Z.; Nagle, D. G.; Zhang, W. D. Nat. Prod. Rep. 2021, 38, 7.
doi: 10.1039/D0NP00019A pmid: 26745345 |
|
(c) Zhai, C.; Schreiber, C. L.; Padilla-Coley, S.; Oliver, A. G.; Smith, B. D. Angew. Chem., Int. Ed. 2020, 59, 23740.
doi: 10.1002/anie.v59.52 pmid: 26745345 |
|
(d) Zhou, X. M.; Zuo, C.; Li, W. Q.; Shi, W. W.; Zhou, X. W.; Wang, H. F.; Chen, S. M.; Du, J. F.; Chen, G. Y.; Zhai, W. J.; Zhao, W. S.; Wu, Y. H.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2020, 59, 15114.
doi: 10.1002/anie.v59.35 pmid: 26745345 |
|
(e) Chang, H. N.; Liu, B. Y.; Qi, Y. K.; Zhou, Y.; Chen, Y. P.; Pan, K. M.; Li, W. W.; Zhou, X. M.; Ma, W. W.; Fu, C. Y.; Qi, Y. M.; Liu, L.; Gao, Y. F. Angew. Chem., Int. Ed. 2015, 54, 11760.
doi: 10.1002/anie.v54.40 pmid: 26745345 |
|
(f) Vinogradov, A. A.; Yin, Y.; Suga, H. J. Am. Chem. Soc. 2019, 141, 4167.
doi: 10.1021/jacs.8b13178 pmid: 26745345 |
|
(g) Uppalapati, M.; Lee, D. J.; Mandal, K.; Li, H.; Miranda, L. P.; Lowitz, J.; Kenney, J.; Adams, J. J.; Ault-Riche, D.; Kent, S. B.; Sidhu, S. S. ACS Chem. Biol. 2016, 11, 1058.
doi: 10.1021/acschembio.5b01006 pmid: 26745345 |
|
(h) Silva, O. N.; Torres, M. D. T.; Cao, J.; Alves, E. S. F.; Rodrigues, L. V.; Resende, J. M.; Liao, L. M.; Porto, W. F.; Fensterseifer, I. C. M.; Lu, T. K.; Franco, O. L.; de la Fuente-Nunez, C. Proc. Natl. Acad. Sci. U. S. A. 2020, 117, 26936.
doi: 10.1073/pnas.2012379117 pmid: 26745345 |
|
[2] |
(a) Zheng, J. S.; Tang, S.; Qi, Y. K.; Wang, Z. P.; Liu, L. Nat. Protoc. 2013, 8, 2483.
doi: 10.1038/nprot.2013.152 pmid: 32134276 |
(b) Sgorbati, C.; Lo Presti, E.; Bergamaschi, G.; Sani, M.; Volonterio, A. J. Org. Chem. 2021, 86, 9225.
doi: 10.1021/acs.joc.1c00853 pmid: 32134276 |
|
(c) Kim, H. S.; Lee, Y.; Shin, M. H.; Lim, H. S. Chem. Commun. 2021, 57, 6800.
doi: 10.1039/D1CC02848K pmid: 32134276 |
|
(d) Suzuki, R.; Konno, H. Org. Lett. 2020, 22, 3309.
doi: 10.1021/acs.orglett.0c00445 pmid: 32134276 |
|
(e) Kent, S. B. H. Chem. Soc. Rev. 2009, 38, 338.
doi: 10.1039/B700141J pmid: 32134276 |
|
(f) Akondi, K. B.; Muttenthaler, M.; Dutertre, S.; Kaas, Q.; Craik, D. J.; Lewis, R. J.; Alewood, P. F. Chem. Rev. 2014, 114, 5815.
doi: 10.1021/cr400401e pmid: 32134276 |
|
(g) Cui, H. K.; Guo, Y.; He, Y.; Wang, F. L.; Chang, H. N.; Wang, Y. J.; Wu, F. M.; Tian, C. L.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 9558.
doi: 10.1002/anie.v52.36 pmid: 32134276 |
|
[3] |
(a) Muramatsu, W.; Yamamoto, H. J. Am. Chem. Soc. 2021, 143, 6792.
doi: 10.1021/jacs.1c02600 |
(b) Muramatsu, W.; Hattori, T.; Yamamoto, H. Chem. Commun. 2021, 57, 6346.
doi: 10.1039/D1CC01795K |
|
(c) Albericio, F.; El-Faham, A. Org. Process Res. Dev. 2018, 22, 760.
doi: 10.1021/acs.oprd.8b00159 |
|
[4] |
(a) Wang, Z.; Wang, X.; Wang, P.; Zhao, J. J. Am. Chem. Soc. 2021, 143, 10374.
doi: 10.1021/jacs.1c04614 |
(b) Hu, L.; Xu, S.; Zhao, Z.; Yang, Y.; Peng, Z.; Yang, M.; Wang, C.; Zhao, J. J. Am. Chem. Soc. 2016, 138, 13135.
doi: 10.1021/jacs.6b07230 |
|
[5] |
Isidro-Llobet, A.; Kenworthy, M. N.; Mukherjee, S.; Kopach, M. E.; Wegner, K.; Gallou, F.; Smith, A. G.; Roschangar, F. J. Org. Chem. 2019, 84, 4615.
doi: 10.1021/acs.joc.8b03001 pmid: 30900880 |
[6] |
Subiros-Funosas, R.; Prohens, R.; Barbas, R.; El-Faham, A.; Albericio, F. Chem. Eur. J. 2009, 15, 9394.
doi: 10.1002/chem.v15:37 |
[7] |
Wang, F.; Xu, L.; Chu, G.; Shi, J.; Guo, Q. Chin. J. Org. Chem. 2016, 36, 218. (in Chinese)
doi: 10.6023/cjoc201505014 |
( 王风亮, 许玲, 储国超, 石景, 郭庆祥, 有机化学, 2016, 36, 218.)
doi: 10.6023/cjoc201505014 |
|
[8] |
(a) Qu, Q.; Pan, M.; Gao, S.; Zheng, Q. Y.; Yu, Y. Y.; Su, J. C.; Li, X.; Hu, H. G. Adv. Sci. 2018, 5, 1800234.
doi: 10.1002/advs.v5.7 |
(b) Qu, Q.; Gao, S.; Wu, F.; Zhang, M. G.; Li, Y.; Zhang, L. H.; Bierer, D.; Tian, C. L.; Zheng, J. S.; Liu, L. Angew. Chem., Int. Ed. 2020, 59, 6037.
doi: 10.1002/anie.v59.15 |
|
(c) Guan, C. J.; Wang, T.; Wang, J.; Li, Y. M. Chin. J. Org. Chem. 2016, 36, 2763. (in Chinese)
doi: 10.6023/cjoc201605013 |
|
( 管超建, 王涛, 王君, 李宜明, 有机化学, 2016, 36, 2763.)
doi: 10.6023/cjoc201605013 |
|
(d) Huang, Y. C.; Guan, C. J.; Tan, X. L.; Chen, C. C.; Guo, Q. X.; Li, Y. M. Org. Biomol. Chem. 2015, 13, 1500.
doi: 10.1039/C4OB02260B |
|
(e) Liang, L. J.; Chu, G. C.; Qu, Q.; Zuo, C.; Mao, J.; Zheng, Q.; Chen, J.; Meng, X.; Jing, Y.; Deng, H.; Li, Y. M.; Liu, L. Angew. Chem., Int. Ed. 2021, 60, 17171.
doi: 10.1002/anie.v60.31 |
|
(f) Zuo, C.; Shi, W.-W.; Chen, X.-X.; Glatz, M.; Riedl, B.; Flamme, I.; Pook, E.; Wang, J.; Fang, G.-M.; Bierer, D.; Liu, L. Sci. China Chem. 2019, 62, 1371.
doi: 10.1007/s11426-019-9513-2 |
|
[9] |
(a) Coste, B.; Mathur, J.; Schmidt, M.; Earley, T. J.; Ranade, S.; Petrus, M. J.; Dubin, A. E.; Patapoutian, A. Science 2010, 330, 55.
doi: 10.1126/science.1193270 |
(b) Coste, B.; Xiao, B.; Santos, J. S.; Syeda, R.; Grandl, J.; Spencer, K. S.; Kim, S. E.; Schmidt, M.; Mathur, J.; Dubin, A. E.; Montal, M.; Patapoutian, A. Nature 2012, 483, 176.
doi: 10.1038/nature10812 |
|
[10] |
(a) Bae, C.; Gnanasambandam, R.; Nicolai, C.; Sachs, F.; Gottlieb, P. A. Proc. Natl. Acad. Sci. U. S. A. 2013, 110, E1162.
pmid: 23695678 |
(b) Albuisson, J.; Murthy, S. E.; Bandell, M.; Coste, B.; Louis-Dit-Picard, H.; Mathur, J.; Feneant-Thibault, M.; Tertian, G.; de Jaureguiberry, J. P.; Syfuss, P. Y.; Cahalan, S.; Garcon, L.; Toutain, F.; Simon Rohrlich, P.; Delaunay, J.; Picard, V.; Jeunemaitre, X.; Patapoutian, A. Nat. Commun. 2013, 4, 1884.
doi: 10.1038/ncomms2899 pmid: 23695678 |
|
[11] |
(a) Suchyna, T. M.; Johnson, J. H.; Hamer, K.; Leykam, J. F.; Gage, D. A.; Clemo, H. F.; Baumgarten, C. M.; Sachs, F. J. Gen. Physiol. 2000, 115, 583.
doi: 10.1085/jgp.115.5.583 pmid: 10779316 |
(b) Ostrow, K. L.; Mammoser, A.; Suchyna, T.; Sachs, F.; Oswald, R.; Kubo, S.; Chino, N.; Gottlieb, P. A. Toxicon 2003, 42, 263.
doi: 10.1016/S0041-0101(03)00141-7 pmid: 10779316 |
|
[12] |
(a) Qu, Q.; Gao, S.; Li, Y. M. J. Pept. Sci. 2018, 24, e3112.
doi: 10.1002/psc.v24.8-9 |
(b) Zhu, W.; Hou, F.; Fang, J.; Bahrani Fard, M. R.; Liu, Y.; Ren, S.; Wu, S.; Qi, Y.; Sui, S.; Read, A. T.; Sherwood, J. M.; Zou, W.; Yu, H.; Zhang, J.; Overby, D. R.; Wang, N.; Ethier, C. R.; Wang, K. iScience 2021, 24, 102042.
doi: 10.1016/j.isci.2021.102042 |
|
[13] |
(a) Fang, G. M.; Wang, J. X.; Liu, L. Angew. Chem., Int. Ed. 2012, 51, 10347.
doi: 10.1002/anie.201203843 |
(b) Fang, G. M.; Li, Y. M.; Shen, F.; Huang, Y. C.; Li, J. B.; Lin, Y.; Cui, H. K.; Liu, L. Angew. Chem., Int. Ed. 2011, 50, 7645.
doi: 10.1002/anie.201100996 |
|
(c) Huang, Y. C.; Li, Y. M.; Chen, Y.; Pan, M.; Li, Y. T.; Yu, L.; Guo, Q. X.; Liu, L. Angew. Chem., Int. Ed. 2013, 52, 4858.
doi: 10.1002/anie.v52.18 |
|
[14] |
(a) Pan, M.; Gao, S.; Zheng, Y.; Tan, X.; Lan, H.; Tan, X.; Sun, D.; Lu, L.; Wang, T.; Zheng, Q.; Huang, Y.; Wang, J.; Liu, L. J. Am. Chem. Soc. 2016, 138, 7429.
doi: 10.1021/jacs.6b04031 |
(b) Chen, X. T.; Wang, J. Y.; Ma, Y. N.; Dong, L. Y.; Jia, S. X.; Yin, H.; Fu, X. Y.; Du, S. S.; Qi, Y. K.; Wang, K. J. Pept. Sci. 2021, e3368.
|
|
[15] |
(a) Wang, J.; Dong, L.; Liu, Y.; Chen, X.; Ma, Y.; Yin, H.; Du, S.; Qi, Y.; Wang, K. Chin. J. Org. Chem. 2021, 41, 2800. (in Chinese)
doi: 10.6023/cjoc202102045 |
( 王金艳, 董黎颖, 刘雅妮, 陈西同, 马艳楠, 尹昊, 杜姗姗, 齐昀坤, 王克威, 有机化学, 2021, 41, 2800.)
doi: 10.6023/cjoc202102045 |
|
(b) Tang, S.; Zuo, C.; Huang, D. L.; Cai, X. Y.; Zhang, L. H.; Tian, C. L.; Zheng, J. S.; Liu, L. Nat. Protoc. 2017, 12, 2554.
doi: 10.1038/nprot.2017.129 |
|
(c) Li, J. B.; Qi, Y. K.; He, Q. Q.; Ai, H. S.; Liu, S. L.; Wang, J. X.; Zheng, J. S.; Liu, L.; Tian, C. Cell Res. 2018, 28, 257.
doi: 10.1038/cr.2017.157 |
[1] | 王金艳, 董黎颖, 刘雅妮, 陈西同, 马艳楠, 尹昊, 杜姗姗, 齐昀坤, 王克威. 蜈蚣毒素多肽RhTx的高效化学合成及复性折叠研究[J]. 有机化学, 2021, 41(7): 2800-2809. |
[2] | 葛巍巍, 陈静, 张也, 宗良, 张鸣, 董俊军. 半选择性氧化形成三对二硫键合成利那洛肽[J]. 有机化学, 2017, 37(9): 2409-2415. |
[3] | 王风亮, 许玲, 储国超, 石景, 郭庆祥. 使用新型耦合活化剂Oxyma高效合成利拉鲁肽[J]. 有机化学, 2016, 36(1): 218-221. |
[4] | 吴巧玲, 刘珠果, 付超, 林原斌, 戴秋云. 一种含两对密集二硫键的模拟肽[J]. 有机化学, 2010, 30(10): 1517-1520. |
[5] | 张 俊a ; 杨 明a ;王安明a ; 王 华a ; 周 成a ; 杜志强a; 祝社民b; 沈树宝*,a . 微波作用下大位阻氨基酸与H-Pro-CTC树脂的高效缩合[J]. 有机化学, 2008, 28(12): 2119-2125. |
[6] | 迟玉石,张惠斌,倪帅健,黄文龙. 微波促进催产素和赖氨加压素环肽的固相合成[J]. 有机化学, 2008, 28(03): 416-421. |
[7] | 宓鹏程,朱颐申,张琪,韦萍. 固相合成胸腺五肽(TP5)[J]. 有机化学, 2007, 27(12): 1525-1529. |
[8] | 黄小毅, 王涛, 夏传琴, 余孝其, 谢如刚. 新型含二硫键的环肽的合成[J]. 有机化学, 2004, 24(12): 1629-1632. |
[9] | 蒋辉,钟明鼐,陈冀胜,苗振伟. 富含二硫键的小分子肽合成研究进展[J]. 有机化学, 1999, 19(3): 214-223. |
[10] | 王良友,潘和平,陈正英. 多肽合成中几种形成二硫键方法的介绍[J]. 有机化学, 1998, 18(6): 576-580. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||