有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3620-3639.DOI: 10.6023/cjoc202205009 上一篇 下一篇
综述与进展
夏鹏鹏a, 陈江太a, 施高凡a, 张蒙蒙b, 尧婉辰a, 林祥德b,*(), 曾冬冬b,*()
收稿日期:
2022-05-06
修回日期:
2022-06-13
发布日期:
2022-07-05
通讯作者:
林祥德, 曾冬冬
基金资助:
Pengpeng Xiaa, Jiangtai Chena, Gaofan Shia, Mengmeng Zhangb, Wanchen Yaoa, Xiangde Linb(), Dongdong Zengb()
Received:
2022-05-06
Revised:
2022-06-13
Published:
2022-07-05
Contact:
Xiangde Lin, Dongdong Zeng
Supported by:
文章分享
萘酰亚胺衍生物具有出色的光物理特性, 已被设计为光学探针并应用于各种生物学场景. 作为生物学中重要的微环境和活性硫物质在生物系统中发挥着重要作用, 有必要对其进行高效的检测. 综述了萘酰亚胺衍生物探针对微环境和活性硫物质的检测. 从pH值、粘度、极性和温度四个方面对微环境的检测进行阐述, 讨论了探针的设计方案和各类荧光性能的比较. 从检测策略角度把机制分为亲核取代策略、亲核加成策略、取代基的还原策略、重金属置换策略和其他策略, 对活性硫物质进行论述, 并对这些探针的各类荧光性能进行汇总与比较. 最后, 描述了这类探针的设计和实际应用中的一些不足, 并对这一领域未来前景进行了展望.
夏鹏鹏, 陈江太, 施高凡, 张蒙蒙, 尧婉辰, 林祥德, 曾冬冬. 监测微环境理化性质和活性硫物质的萘酰亚胺衍生物光学探针研究进展[J]. 有机化学, 2022, 42(11): 3620-3639.
Pengpeng Xia, Jiangtai Chen, Gaofan Shi, Mengmeng Zhang, Wanchen Yao, Xiangde Lin, Dongdong Zeng. Research Progress of Naphthalimide Derivatives Optical Probes for Monitoring Physical and Chemical Properties of Microenvironment and Active Sulfur Substances[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3620-3639.
Probe | λex/nm | λem/nm | pKa | pH response | Mechanism | Target | Ref. |
---|---|---|---|---|---|---|---|
NA01(1) NA01(2) NA01(3) | 405 | 517 | 5.98 5.90 6.83 | 4.5~7.5 | PeT | Lysosomes | [20] |
NA02 | 409 | 525 | 6.18±0.049 | 5.0~7.5 | PeT | Mitochondria | [21] |
NA03 | 430 | 535 | — | 5.0~7.0 | — | Endoplasmic reticulum | [22] |
NA04 | 405 | 467, 525 | 6.01 | 4.0~10.0 | PeT, FRET | Intracell | [23] |
NA05 | 462 | 550, 580 | 5.23 | — | PeT, FRET | Lysosomes | [24] |
Probe | λex/nm | λem/nm | pKa | pH response | Mechanism | Target | Ref. |
---|---|---|---|---|---|---|---|
NA01(1) NA01(2) NA01(3) | 405 | 517 | 5.98 5.90 6.83 | 4.5~7.5 | PeT | Lysosomes | [20] |
NA02 | 409 | 525 | 6.18±0.049 | 5.0~7.5 | PeT | Mitochondria | [21] |
NA03 | 430 | 535 | — | 5.0~7.0 | — | Endoplasmic reticulum | [22] |
NA04 | 405 | 467, 525 | 6.01 | 4.0~10.0 | PeT, FRET | Intracell | [23] |
NA05 | 462 | 550, 580 | 5.23 | — | PeT, FRET | Lysosomes | [24] |
Probe | λex/nm | λem/nm | Target | Mechanism | Ref. |
---|---|---|---|---|---|
NA13 | 460 | 535 | Lysosomes | TICT | [36] |
NA14 | 440 | 560 | Cell membranes | ICT | [37] |
NA15 | 405 | 470 | Intracell | TICT | [38] |
NA16(1) NA16(2) NA16(3) | 510 547 533 | 580 614 630 | Mitochondrial | TICT | [39] |
NA17 | — | 452, 473 | — | AIE, TICT | [40] |
NA18 | 360 | 526 | — | TICT, FRET | [41] |
NA19 | 580 | 635 | Mitochondrial | TICT | [42] |
Probe | λex/nm | λem/nm | Target | Mechanism | Ref. |
---|---|---|---|---|---|
NA13 | 460 | 535 | Lysosomes | TICT | [36] |
NA14 | 440 | 560 | Cell membranes | ICT | [37] |
NA15 | 405 | 470 | Intracell | TICT | [38] |
NA16(1) NA16(2) NA16(3) | 510 547 533 | 580 614 630 | Mitochondrial | TICT | [39] |
NA17 | — | 452, 473 | — | AIE, TICT | [40] |
NA18 | 360 | 526 | — | TICT, FRET | [41] |
NA19 | 580 | 635 | Mitochondrial | TICT | [42] |
Detection target | λex/nm | λem/nm | Response time | Detection limit | Mechanism | Ref. |
---|---|---|---|---|---|---|
H2S | 450 | 557 | — | 17.4 nmol/L | ICT | [54] |
H2S | 426 | 550 | — | 0.78 μmol/L | — | [55] |
H2S | 405 | 450 550 | 45 min | 40 nmol/L | ICT | [12] |
H2S | 440 | 532 | 150 s | 0.02 μmol/L | ICT | [14] |
H2S | 388 | 452 | 10 s | 1.5 μmol/L | PeT, ICT | [13] |
H2S | 450 | 550 | 60 min | 0.523 nmol/L | FRET | [56] |
H2Sn | 450 | 548 | 6 min | 0.15 μmol/L | ICT | [57] |
H2Sn | 405 | 478 546 | 10 min | 0.01 μmol/L | ICT | [58] |
H2S | — | 550 | — | — | PeT | [59] |
H2S | 365 | 450 | 200 min | — | — | [11] |
H2S | 310 | 550 | 5 min | 0.23 μmol/L | PeT, ICT | [60] |
Detection target | λex/nm | λem/nm | Response time | Detection limit | Mechanism | Ref. |
---|---|---|---|---|---|---|
H2S | 450 | 557 | — | 17.4 nmol/L | ICT | [54] |
H2S | 426 | 550 | — | 0.78 μmol/L | — | [55] |
H2S | 405 | 450 550 | 45 min | 40 nmol/L | ICT | [12] |
H2S | 440 | 532 | 150 s | 0.02 μmol/L | ICT | [14] |
H2S | 388 | 452 | 10 s | 1.5 μmol/L | PeT, ICT | [13] |
H2S | 450 | 550 | 60 min | 0.523 nmol/L | FRET | [56] |
H2Sn | 450 | 548 | 6 min | 0.15 μmol/L | ICT | [57] |
H2Sn | 405 | 478 546 | 10 min | 0.01 μmol/L | ICT | [58] |
H2S | — | 550 | — | — | PeT | [59] |
H2S | 365 | 450 | 200 min | — | — | [11] |
H2S | 310 | 550 | 5 min | 0.23 μmol/L | PeT, ICT | [60] |
Probe | Detection target | λex/nm | λem/nm | Response time | Detection limit | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
NA36 | Cys | 350 | 473 | 10 min | 2.0 nmol/L | PeT, ICT | [64] |
NA37 | GSH Hcy | 356 | 441 | 2 min 1 min | 1.1 nmol/L 3.2 nmol/L | PeT | [17] |
NA38 | Cys | 455 | 558 | 15 min | 12 nmol/L | PeT | [65] |
NA39 | Cys Hcy GSH | 435 | 550 | 8 min — — | 69 nmol/L 90 nmol/L 100 nmol/L | PeT | [66] |
NA40 | Cys | — | 430, 547 | 10 min | 80 nmol/L | ICT | [67] |
NA41 | Cys | 620 | 665 | 20 min | 93 nmol/L | ICT | [15] |
NA42(3) | GSH Cys | 380 380 420 | 498 451 535 | — | 50 nmol/L 200 nmol/L | ICT | [68] |
NA43 | Cys Hcy | 360 660 360 660 | 435 733 475 733 | 50 min 75 min | 27.9 nmol/L 30.1 nmol/L | — | [69] |
NA44 | Cys | 402 | 559 | 55 min | 0.87 μmol/L | FRET | [70] |
NA45 | GSH Hcy | 345 | 490 490, 552 | 6 h | 0.8 μmol/L 0.1 μmol/L | — | [71] |
NA46 | GSH | 370 | 495 | 5 h | — | PeT | [72] |
NA47 | GSH | 330 | 496 | 10 h | 1.9 μmol/L | — | [73] |
NA48 | GSH | 350 | 495 | — | 9.3068 mmol/L | — | [74] |
NA49 | Cys Hcy GSH | 418 | 541 | — | 0.42 μmol/L 0.105 μmol/L 4.34 μmol/L | — | [75] |
NA50 | Biothiols | 410 | 485, 585 | — | — | FRET | [76] |
NA51 | Cys Hcy | 439 | 524 | 70 min | — | — | [16] |
NA52 | Biothiols | 440 | 560 | 20 min | — | ICT | [77] |
NA53 | GST | 389 | 503 | — | — | — | [79] |
NA54 | GST | 420 | 550 | 25 min | 35 ng/mL | PeT | [80] |
NA55 | GGT | 362 | 473 | 20 min | 210 μU/mL | — | [81] |
NA56 | TrxR | 438 | 538 | 3 h | — | — | [83] |
NA57 | Trx | 428 | 540 | — | 50 nmol/L | — | [84] |
NA58 | GSH | 436 | 545 | 3 h | — | — | [85] |
NA59 | VDP | 405 | 470, 540 | 60 min | 0.14 μmol/L | FRET | [86] |
Probe | Detection target | λex/nm | λem/nm | Response time | Detection limit | Mechanism | Ref. |
---|---|---|---|---|---|---|---|
NA36 | Cys | 350 | 473 | 10 min | 2.0 nmol/L | PeT, ICT | [64] |
NA37 | GSH Hcy | 356 | 441 | 2 min 1 min | 1.1 nmol/L 3.2 nmol/L | PeT | [17] |
NA38 | Cys | 455 | 558 | 15 min | 12 nmol/L | PeT | [65] |
NA39 | Cys Hcy GSH | 435 | 550 | 8 min — — | 69 nmol/L 90 nmol/L 100 nmol/L | PeT | [66] |
NA40 | Cys | — | 430, 547 | 10 min | 80 nmol/L | ICT | [67] |
NA41 | Cys | 620 | 665 | 20 min | 93 nmol/L | ICT | [15] |
NA42(3) | GSH Cys | 380 380 420 | 498 451 535 | — | 50 nmol/L 200 nmol/L | ICT | [68] |
NA43 | Cys Hcy | 360 660 360 660 | 435 733 475 733 | 50 min 75 min | 27.9 nmol/L 30.1 nmol/L | — | [69] |
NA44 | Cys | 402 | 559 | 55 min | 0.87 μmol/L | FRET | [70] |
NA45 | GSH Hcy | 345 | 490 490, 552 | 6 h | 0.8 μmol/L 0.1 μmol/L | — | [71] |
NA46 | GSH | 370 | 495 | 5 h | — | PeT | [72] |
NA47 | GSH | 330 | 496 | 10 h | 1.9 μmol/L | — | [73] |
NA48 | GSH | 350 | 495 | — | 9.3068 mmol/L | — | [74] |
NA49 | Cys Hcy GSH | 418 | 541 | — | 0.42 μmol/L 0.105 μmol/L 4.34 μmol/L | — | [75] |
NA50 | Biothiols | 410 | 485, 585 | — | — | FRET | [76] |
NA51 | Cys Hcy | 439 | 524 | 70 min | — | — | [16] |
NA52 | Biothiols | 440 | 560 | 20 min | — | ICT | [77] |
NA53 | GST | 389 | 503 | — | — | — | [79] |
NA54 | GST | 420 | 550 | 25 min | 35 ng/mL | PeT | [80] |
NA55 | GGT | 362 | 473 | 20 min | 210 μU/mL | — | [81] |
NA56 | TrxR | 438 | 538 | 3 h | — | — | [83] |
NA57 | Trx | 428 | 540 | — | 50 nmol/L | — | [84] |
NA58 | GSH | 436 | 545 | 3 h | — | — | [85] |
NA59 | VDP | 405 | 470, 540 | 60 min | 0.14 μmol/L | FRET | [86] |
[68] |
Song, L.; Jia, T.; Lu, W. J.; Jia, N. Q.; Zhang, W. B.; Qian, J. H. Org. Biomol. Chem. 2014, 12, 8422.
doi: 10.1039/c4ob01219d pmid: 25220214 |
[69] |
Shen, R. H.; Bai, J.; Qian, Y. J. Mater. Chem. B 2021, 9, 2462.
doi: 10.1039/D0TB02851G |
[70] |
Wang, Y. P.; Chen, J.; Shu, Y.; Wang, J. H.; Qiu, H. D. Spectrochim. Acta, Part A 2022, 266, 120409.
|
[71] |
Huang, J.; Chen, Y. N.; Qi, J. G.; Zhou, X. M.; Niu, L. Q.; Yan, Z. J.; Wang, J. H.; Zhao, G. X. Spectrochim. Acta, Part A 2018, 201, 105.
|
[72] |
Cao, M. J.; Chen, H. Y.; Chen, D.; Xu, Z. Q.; Liu, S. H.; Chen, X. Q.; Yin, J. Chem. Commun. 2016, 52, 721.
doi: 10.1039/C5CC08328A |
[73] |
Han, X.; Liu, Y. H.; Liu, G. T.; Luo, J. T.; Liu, S. H.; Zhao, W. B.; Yin, J. Chem.-Asian J. 2019, 14, 890.
doi: 10.1002/asia.201801854 |
[74] |
Kwon, N.; Lim, C. S.; Ko, G.; Ha, J.; Lee, D.; Yin, J.; Kim, H. M.; Yoon, J. Anal. Chem. 2021, 93, 11612.
doi: 10.1021/acs.analchem.1c02350 |
[75] |
Shi, Y. G.; Yao, J. H.; Duan, Y. L.; Mi, Q. L.; Chen, J. H.; Xu, Q. Q.; Gou, G. Z.; Zhou, Y.; Zhang, J. F. Bioorg. Med. Chem. Lett. 2013, 23, 2538.
|
[76] |
Luxami, V.; Verma, M.; Rani, R.; Paul, K.; Kumar, S. Org. Biomol. Chem. 2012, 10, 8076.
pmid: 22932925 |
[77] |
Zeng, Q. B.; Guo, Q. N.; Yuan, Y. P.; Yang, Y. Q.; Zhang, B.; Ren, L. L.; Zhang, X. X.; Luo, Q.; Liu, M. L.; Bouchard, L. S.; Zhou, X. Anal. Chem. 2017, 89, 2288.
doi: 10.1021/acs.analchem.6b03742 |
[78] |
Song, A. G.; Feng, T.; Shen, X.; Gai, S. C.; Zhai, Y. M.; Chen, H. Chem. Commun. 2019, 55, 7219.
doi: 10.1039/C9CC02702E |
[79] |
Fujikawa, Y.; Terakado, K.; Nampo, T.; Mori, M.; Inoue, H. Talanta 2019, 204, 633.
doi: S0039-9140(19)30684-8 pmid: 31357346 |
[80] |
Zhang, J.; Jin, Z.; Hu, X. X.; Meng, H. M.; Li, J.; Zhang, X. B.; Liu, H. W.; Deng, T. G.; Yao, S.; Feng, L. L. Anal. Chem. 2017, 89, 8097.
doi: 10.1021/acs.analchem.7b01659 pmid: 28675031 |
[81] |
Tong, H. J.; Zheng, Y. J.; Zhou, L.; Li, X. M.; Qian, R.; Wang, R.; Zhao, J. H.; Lou, K. Y.; Wang, W. Anal. Chem. 2016, 88, 10816.
doi: 10.1021/acs.analchem.6b03448 |
[82] |
Lu, J.; Holmgren, A. Free Radical Biol. Med. 2014, 66, 75.
doi: 10.1016/j.freeradbiomed.2013.07.036 |
[83] |
Zhang, L. W.; Duan, D. Z.; Liu, Y. P.; Ge, C. P.; Cui, X. M.; Sun, J. Y.; Fang, J. G. J. Am. Chem. Soc. 2014, 136, 226.
doi: 10.1021/ja408792k |
[84] |
Lee, M. H.; Han, J. H.; Lee, J. H.; Choi, H. G.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2012, 134, 17314.
doi: 10.1021/ja308446y |
[1] |
Zhou, K.; Ren, M. G..; Deng, B. B; Lin, W. L. New J. Chem. 2017, 41, 11507.
doi: 10.1039/C7NJ02270K |
[2] |
Li, X. L.; Zhao, R. R.; Wang, Y.; Huang, C. S. J. Mater. Chem. B 2018, 6, 6592.
doi: 10.1039/C8TB01885E |
[3] |
Li, H. D.; Kim, H. J.; Xu, F.; Han, J. J.; Yao, Q. C.; Wang, J. Y.; Pu, K. Y.; Peng, X. J.; Yoon, J. Y. Chem. Soc. Rev. 2022, 51, 1795.
doi: 10.1039/D1CS00307K |
[4] |
Li, M.; Fan, J. L.; Li, H. D.; Du, J. J.; Long, S. R.; Peng, X. J. Biomaterials 2018, 164, 98.
doi: 10.1016/j.biomaterials.2018.02.044 |
[5] |
Liu, T.; Sun, L.; Zhang, Y. B..; Wang, Y. L; Zheng, J. J. Biochem. Mol. Toxicol. 2022, 36, e22942.
|
[6] |
Lau, N.; Pluth, M. D. Curr. Opin. Chem. Biol. 2019, 49, 1.
doi: 10.1016/j.cbpa.2018.08.012 |
[7] |
Chen, W. J.; Ma, X. M.; Chen, H. J.; Liu, S. H.; Yin, J. Coord. Chem. Rev. 2021, 427, 213584.
doi: 10.1016/j.ccr.2020.213584 |
[8] |
He, X. Y.; Li, H.; Liu, S. S.; Li, Y.; Lin, X. D.; Zheng, H. Y.; Zhou, Z. L.; Zeng, D. D. ChemistrySelect 2022, 7, e202103821.
|
[9] |
Ulla, H.; Kiran, M. R.; Garudachari, B.; Ahipa, T. N.; Tarafder, K.; Adhikari, A. V.; Umesh, G.; Satyanarayan, M. N. J. Mol. Struct. 2017, 1143, 344.
doi: 10.1016/j.molstruc.2017.04.103 |
[10] |
Shao, J. J.; Chang, J. J.; Chi, C. Y. Chem.-Asian J. 2014, 9, 253.
doi: 10.1002/asia.201300895 |
[11] |
Li, L.; Zhang, Z. Q. Spectrochim. Acta, Part A 2022, 264, 120243.
|
[12] |
Gao, C.; Liu, X. J.; Chen, W.; Wang, F. L.; Jiang, J. H. Methods Appl. Fluoresc. 2018, 7, 014002.
doi: 10.1088/2050-6120/aae9c4 |
[13] |
Jothi, D.; Munusamy, S.; Iyer, S. K. J. Photochem. Photobiol., A 2021, 420, 113491.
|
[14] |
Shi, X. R.; Yin, C. X.; Wen, Y.; Huo, F. J. Dyes Pigm. 2019, 165, 38.
doi: 10.1016/j.dyepig.2019.02.014 |
[15] |
Hou, X. F.; Li, Z. S.; Li, Y. Q.; Zhou, Q. H.; Liu, C. H.; Fan, D.; Wang, J. J.; Xu, R. J.; Xu, Z. H. Spectrochim. Acta, Part A 2021, 246, 119030.
|
[16] |
Wang, P.; Liu, J.; Lv, X.; Liu, Y. L.; Zhao, Y.; Guo, W. Org. Lett. 2012, 14, 520.
doi: 10.1021/ol203123t pmid: 22220759 |
[17] |
Hu, L.; Ju, M.; Gao, A. Q.; Chen, H. H.; Hou, A. Q. Dyes Pigm. 2022, 200, 110164.
doi: 10.1016/j.dyepig.2022.110164 |
[85] |
Wi, Y. J.; Le, H. T.; Verwilst, P.; Sunwoo, K.; Kim, S. J.; Song, J. E.; Yoon, H. Y.; Han, G.; Kim, J. S.; Kang, C.; Kim, T. W. Chem. Commun. 2018, 54, 8897.
doi: 10.1039/C8CC04846K |
[86] |
Huang, C. S.; Jia, T.; Tang, M. F.; Yin, Q.; Zhu, W. P.; Zhang, C.; Yang, Y.; Jia, N. Q.; Xu, Y. F.; Qian, X. H. J. Am. Chem. Soc. 2014, 136, 14237.
doi: 10.1021/ja5079656 |
[18] |
Gopala, L.; Cha, Y. J.; Lee, M. H. Dyes Pigm. 2022, 201, 110195.
doi: 10.1016/j.dyepig.2022.110195 |
[19] |
Qiu, K. Q.; Seino, R.; Han, G. Q.; Ishiyama, M.; Ueno, Y.; Tian, Z. Q.; Sun, Y. J.; Diao, J. J. Adv. Healthcare Mater. 2022, e2102185.
|
[20] |
Tian, Y. Q.; Su, F. Y.; Weber, W.; Nandakumar, V.; Shumway, B. R.; Jin, Y. G.; Zhou, X. F.; Holl, M. R.; Johnson, R. H.; Meldrum, D. R. Biomaterials 2010, 31, 7411.
doi: 10.1016/j.biomaterials.2010.06.023 |
[21] |
Lee, M. H.; Park, N.; Yi, C.; Han, J. H.; Hong, J. H.; Kim, K. P.; Kang, D. H.; Sessler, J. L.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2014, 136, 14136.
doi: 10.1021/ja506301n |
[22] |
Lee, M. H.; Kim, J. Y.; Han, J. H.; Bhuniya, S.; Sessler, J. L.; Kang, C.; Kim, J. S. J. Am. Chem. Soc. 2012, 134, 12668.
doi: 10.1021/ja303998y |
[23] |
Zhou, X. F.; Su, F. Y.; Lu, H. G.; Willis, P. S.; Tian, Y. Q.; Johnson, R. H.; Meldrum, D. R. Biomaterials 2012, 33, 171.
doi: 10.1016/j.biomaterials.2011.09.053 |
[24] |
Hu, F.; Huang, Y. X.; Xiao, Y. S.; Li, Y. C.; Luo, X.; Qian, X. H.; Yang, Y. J. Anal. Methods 2021, 13, 3012.
doi: 10.1039/D1AY00868D |
[25] |
Liu, Q.; Liu, Y. Q.; Zhang, H.; Wen, Z. R. Spectrochim. Acta, Part A 2006, 65, 164.
|
[26] |
Loukova, G. V.; Vasiliev, V. P.; Milov, A. A.; Smirnov, V. A.; Minkin, V. I. J. Photochem. Photobiol., A 2016, 327, 6.
|
[27] |
Gonzalez, F. F.; Gutierrez, M. F.; Puentes, D. G.; Orte, A.; Gonzalez-Vera, J. A.; Herranz, R. Eur. J. Med. Chem. 2020, 200, 112407.
doi: 10.1016/j.ejmech.2020.112407 |
[28] |
Xiao, H. B.; Chen, M. J.; Shi, G. H.; Wang, L.; Yin, H. Y.; Mei, C. Res. Chem. Intermed. 2010, 36, 1021.
doi: 10.1007/s11164-010-0214-6 |
[29] |
Qian, M.; Zhang, L. W.; Pu, Z. J.; Zhang, C.; Chen, Q. X.; Sui, X. H.; Han, X.; Zeng, S.; Cui, H. Y.; Wang, J. Y.; Peng, X. J. Sens. Actuators, B 2021, 344, 130261.
|
[30] |
Gai, F. Q.; Zuo, Y. J.; Lin, W. Y. Talanta 2021, 225, 122059.
doi: 10.1016/j.talanta.2020.122059 |
[31] |
Zhang, Z. H.; Li, C. C.; Cui, W. L.; Qu, J.; Zhang, H. T.; Liu, K. Y.; Zhu, X. Z.; Wang, J. Y. Eur. Polym. J. 2022, 166, 111030.
doi: 10.1016/j.eurpolymj.2022.111030 |
[32] |
Stamentovic, V.; Collado, D.; Inestrosa, E. P. Spectrochim. Acta, Part A 2022, 267, 120546.
|
[33] |
Dai, Y.; Lv, B. K.; Zhang, X. F.; Xiao, Y. Chin. Chem. Lett. 2014, 25, 1001.
doi: 10.1016/j.cclet.2014.05.020 |
[34] |
Lan, H. C.; Li, Q.; Li, Y.; Xiao, S. Z.; Li, Y. Q.; Yan, X. J.; Yuan, S.; Zhu, P. C. Dyes Pigm. 2018, 155, 121.
doi: 10.1016/j.dyepig.2018.03.031 |
[35] |
Zhang, P. Y.; Chen, H. J.; Huang, H. Y.; Qiu, K. Q.; Zhang, C. X.; Chao, H.; Zhang, Q. L. Dalton Trans. 2019, 48, 3990.
doi: 10.1039/C9DT00054B |
[36] |
Hou, L. L.; Ning, P.; Feng, Y.; Ding, Y. Q.; Bai, L.; Li, L.; Yu, H. Z.; Meng, X. M. Anal. Chem. 2018, 90, 7122.
doi: 10.1021/acs.analchem.8b01631 |
[37] |
Wang, L.; Wang, G.; Shang, C. D.; Kang, R.; Fang, Y. ACS Appl. Mater. Interfaces 2017, 9, 35419.
doi: 10.1021/acsami.7b10565 |
[38] |
Kim, S. J.; Park, S. Y.; Yoon, S. A.; Kim, C.; Kang, C.; Lee, M. H. Anal. Chem. 2021, 93, 4391.
doi: 10.1021/acs.analchem.0c04019 |
[39] |
Wei, Y. F.; Zhang, X. Q.; Sun, R.; Xu, Y. J.; Ge, J. F. Dyes Pigm. 2021, 194, 109559.
doi: 10.1016/j.dyepig.2021.109559 |
[40] |
Xia, T. K.; Wang, L. L.; Qu, Y. C.; Rui, Y. C.; Cao, J.; Hu, Y.; Yang, J.; Wu, J. W.; Xu, J. L. J. Mater. Chem. C 2016, 4, 5696.
doi: 10.1039/C6TC01241H |
[41] |
Georgiev, N. I.; Marinova, N. V.; Bojinov, V. B. J. Photochem. Photobiol., A 2020, 401, 112733.
|
[42] |
Zhu, L. Q.; Fu, M. L.; Yin, B.; Wang, L.; Chen, Y. J.; Zhu, Q. Dyes Pigm. 2020, 172, 107859.
doi: 10.1016/j.dyepig.2019.107859 |
[43] |
Wu, N.; Sun, Y. S.; Kong, M. Y.; Lin, X.; Cao, C.; Li, Z. X.; Feng, W.; Li, F. Y. Small 2022, e2107963.
|
[44] |
Qiao, J.; Mu, X. Y.; Qi, L. Biosens. Bioelectron. 2016, 85, 403.
doi: 10.1016/j.bios.2016.04.070 |
[45] |
Wen, Y.; Zhang, W. J.; Liu, T.; Huo, F. J.; Yin, C. X. Anal. Chem. 2017, 89, 11869.
doi: 10.1021/acs.analchem.7b03612 |
[46] |
Zhang, W. J.; Huo, F. J.; Yue, Y. K.; Zhang, Y. B.; Chao, J. B.; Cheng, F. Q.; Yin, C. X. J. Am. Chem. Soc. 2020, 142, 3262.
doi: 10.1021/jacs.9b13936 |
[47] |
Qiao, J.; Wu, D. Y.; Song, Y. Y.; Ji, W. L.; Yue, Q. W.; Mao, L. Q.; Qi, L. Anal. Chem. 2021, 93, 14743.
doi: 10.1021/acs.analchem.1c03263 |
[48] |
Christopherson, C. J.; Mayder, D. M.; Poisson, J.; Paisley, N. R.; Tonge, C. M.; Hudson, Z. M. ACS Appl. Mater. Interfaces 2020, 12, 20000.
doi: 10.1021/acsami.0c05257 |
[49] |
Rani, K.; Sengupta, S. Chem. Sci. 2021, 12, 15533.
doi: 10.1039/D1SC05112A |
[50] |
Zhu, Y. Q.; Romero, E. L.; Ren, X. D.; Sanca, A. J.; Du, C. K.; Liu, C.; Karim, Z. A.; Alshbool, F. Z.; Khasawneh, F. T.; Zhou, J.; Zhong, D. F.; Geng, B. Nat. Commun. 2018, 9, 3952.
doi: 10.1038/s41467-018-06373-0 |
[51] |
Lv, B.; Chen, S.; Tang, C. S.; Jin, H. F.; Du, J. B.; Huang, Y. Q. J. Adv. Res. 2021, 27, 85.
doi: 10.1016/j.jare.2020.05.007 |
[52] |
Park, C. S.; Ha, T. H.; Choi, S. A.; Nguyen, D. N.; Noh, S.; Kwon, O. S.; Lee, C. S.; Yoon, H. Biosens. Bioelectron. 2017, 89, 919.
doi: 10.1016/j.bios.2016.09.093 |
[53] |
Chen, W.; Pacheco, A.; Takano, Y.; Day, J. J.; Hanaoka, K.; Xian, M. Angew. Chem., Int. Ed. 2016, 55, 9993.
doi: 10.1002/anie.201604892 |
[54] |
Zhang, Y. Q.; Zhang, L. Microchem. J. 2020, 159, 105394.
doi: 10.1016/j.microc.2020.105394 |
[55] |
Shi, D. T.; Zhou, D.; Zang, Y.; Li, J.; Chen, G. R.; James, T. D.; He, X. P.; Tian, H. Chem. Commun. 2015, 51, 3653.
doi: 10.1039/C4CC09771H |
[56] |
Velusamy, N.; Thirumalaivasan, N.; Bobba, K. N.; Podder, A.; Wu, S. P.; Bhuniya, S. J. Photochem. Photobiol., B 2019, 191, 99.
|
[57] |
Tian, M. J.; Xu, J. H.; Ma, Q. J.; Li, L. K.; Yuan, H. M.; Sun, J. G.; Zhu, N. N.; Liu, S. Z. Spectrochim. Acta, Part A 2022, 268, 120708.
|
[58] |
Han, Q. X.; Ru, J. X.; Wang, X. C.; Dong, Z.; Wang, L.; Jiang, H.; Liu, W. S. ACS Appl. Bio Mater. 2019, 2, 1987.
doi: 10.1021/acsabm.9b00044 |
[59] |
Singh, N.; Sharma, S.; Singh, R.; Rajput, S.; Chattopadhyay, N.; Tewari, D.; Joshi, K. B.; Verma, S. Chem. Sci. 2021, 12, 16085.
doi: 10.1039/D1SC04030H |
[60] |
Gao, B. Z..; Cui, L. X; Pan, Y.; Xue, M. J.; Zhu, B. Y.; Zhang, G. M.; Zhang, C. H.; Shuang, S. M.; Dong, C. Spectrochim. Acta, Part A 2017, 173, 457.
|
[61] |
Liu, W. J.; Chen, J.; Xu, Z. C. Coord. Chem. Rev. 2021, 429, 213638.
doi: 10.1016/j.ccr.2020.213638 |
[62] |
Li, Y.; Liu, W. M.; Zhang, P. P.; Zhang, H. Y.; Wu, J. S.; Ge, J. C.; Wang, P. F. Biosens. Bioelectron. 2017, 90, 117.
doi: 10.1016/j.bios.2016.11.021 |
[63] |
Yin, C. X.; Xiong, K. M.; Huo, F. J.; Salamanca, J. C.; Strongin, R. M. Angew. Chem., Int. Ed. 2017, 56, 13188.
doi: 10.1002/anie.201704084 |
[64] |
Li, X. M.; Zheng, Y. J.; Tong, H. J.; Qian, R.; Zhou, L.; Liu, G. X.; Tang, Y.; Li, H.; Lou, K. Y.; Wang, W. Chem.-Eur. J. 2016, 22, 9247.
doi: 10.1002/chem.201601126 |
[65] |
Qian, J.; Zhang, G.; Cui, J.; Zhou, L.; Chen, Z.; Zhang, Z.; Zhang, W. Sens. Actuators, B 2020, 311, 127923.
|
[66] |
Liang, B. B.; Wang, B. Y.; Ma, Q. J.; Xie, C. X.; Li, X.; Wang, S. P. Spectrochim. Acta, Part A 2018, 192, 67.
|
[67] |
Zhu, B. C.; Guo, B. P.; Zhao, Y. Z.; Zhang, B.; Du, B. Biosens. Bio- electron. 2014, 55, 72.
|
[1] | 杨维清, 葛宴兵, 陈元元, 刘萍, 付海燕, 马梦林. 1,8-萘酰亚胺衍生物的设计、合成及其对半胱氨酸的识别研究[J]. 有机化学, 2024, 44(1): 180-194. |
[2] | 姜鸿基, 何煦, 李雄. 基于1-(4-己氧)苯和2,4,6-三苯基-1,3,5-三嗪功能化芴单元的聚合物蓝光材料的合成与表征[J]. 有机化学, 2020, 40(3): 763-773. |
[3] | Robert Mroz, Dileep A. K. Vezzu, Brian Wallace, Deepak Ravindranathan, Jeffrey Carroll, Robert D. Pike, 霍守权. 基于C^N^N三齿配体以及苯乙炔基或苯基的环金属化铂磷光络合物的比较研究[J]. 有机化学, 2018, 38(1): 171-182. |
[4] | 李美含, 王宇童, 刘广建, 吕海娟, 邢国文. 溶酶体荧光探针研究新进展[J]. 有机化学, 2017, 37(2): 356-374. |
[5] | 郑月游, 谢琼琳, 王炳喜. 10-甲基-10H-吩噻嗪-5,5-二氧化物衍生物的合成及其光物理和电化学性质[J]. 有机化学, 2016, 36(4): 803-811. |
[6] | 佟振合,吴骊珠,张丽萍. 超分子体系中的光物理和光化学过程[J]. 有机化学, 2001, 21(11): 784-797. |
[7] | 刘中立. 生物抗氧化剂作用的微环境效应和协同效应[J]. 有机化学, 2001, 21(11): 884-889. |
[8] | 王永梅,杜大明,李晓陆,孟继本,周秀中. 微环境影响下的乙酰基香豆素与吲哚的固相光反应[J]. 有机化学, 1997, 17(5): 433-437. |
[9] | 佟振合,甄珍. 环糊精的微环境效应II.环糊精对萘嵌戊烯光化学二聚反应的影响[J]. 有机化学, 1986, 6(1): 44-46. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||