有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3766-3775.DOI: 10.6023/cjoc202205031 上一篇 下一篇
研究论文
高珠鹏a, 项锴b, 徐学涛c,*(), 张雅婷a, 朱道勇a,*()
收稿日期:
2022-05-18
修回日期:
2022-06-30
发布日期:
2022-07-20
通讯作者:
徐学涛, 朱道勇
基金资助:
Zhupeng Gaoa, Kai Xiangb, Xuetao Xuc(), Yating Zhanga, Daoyong Zhua()
Received:
2022-05-18
Revised:
2022-06-30
Published:
2022-07-20
Contact:
Xuetao Xu, Daoyong Zhu
Supported by:
文章分享
报道了利用环状三价碘试剂进行底物极性反转, 一锅法获得β-二羰基类底物α-苯甲酰氧基化产物的新方法. 反应成功的关键在于体系中原位生成了烯醇硅醚结构单元, 最终经过电性诱导极性反转中间体的氧化还原重排而完成转化. 该反应具有良好的原子经济性, 不仅适合克级规模制备和后续衍生化应用, 而且拓展了环状三价碘及其衍生物在极性反转领域的应用范围.
高珠鹏, 项锴, 徐学涛, 张雅婷, 朱道勇. 环状三价碘试剂参与的β-二羰基化合物的α-苯甲酰氧基化反应[J]. 有机化学, 2022, 42(11): 3766-3775.
Zhupeng Gao, Kai Xiang, Xuetao Xu, Yating Zhang, Daoyong Zhu. α-Benzoyloxylation of β-Dicarbonyl Compounds Involving Cyclic Trivalent Iodine Reagents[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3766-3775.
Entry | Solvent | Temperature | Et3N (equiv.) | 3aab/% |
---|---|---|---|---|
1 | CH2Cl2 | -78 ℃ to r.t. | 1.3 | n.d.c,d |
2 | CH2Cl2 | -78 ℃ to r.t. | 1.3 | 60 |
3 | CH2Cl2 | -78 ℃ to r.t. | 1.5 | 40 |
4 | CH2Cl2 | -78 ℃ to r.t. | 1.7 | 30 |
5 | CH2Cl2 | -78 ℃ to r.t. | 2.1 | 30 |
6 | CH2Cl2 | -78 ℃ to r.t. | 2.3 | 20 |
7 | THF | -78 ℃ to r.t. | 1.3 | Trace |
8 | Cyclohexane | -78 ℃ to r.t. | 1.3 | 57 |
9 | n-Heptane | -78 ℃ to r.t. | 1.3 | 61 |
10 | toluene | -78 ℃ to r.t. | 1.3 | 60 |
11 | n-Hexane | -78 ℃ to r.t. | 1.3 | 67 |
12 | n-Hexane | -78 ℃ to r.t. | 1.0 | 29 |
13 | n-Hexane | -78 ℃ to r.t. | 1.1 | 34 |
14 | n-Hexane | -78 ℃ to r.t. | 1.5 | 52 |
15 | n-Hexane | -78 ℃ to r.t. | 1.7 | 56 |
16 | n-Hexane | -78 ℃ to r.t. | 2.0 | 69 |
17 | n-Hexane | -78 ℃ to r.t. | 2.2 | 24 |
18 | n-Hexane | -60 ℃ to r.t. | 2.0 | 66 |
19 | n-Hexane | -40 ℃ to r.t. | 2.0 | 73 |
20 | n-Hexane | -20 ℃ to r.t. | 2.0 | 64 |
21 | n-Hexane | 0 ℃ to r.t. | 2.0 | 52 |
22 | n-Hexane | 60 ℃ | 2.0 | 70 |
23 | n-Hexane | 70 ℃ | 2.0 | 61 |
Entry | Solvent | Temperature | Et3N (equiv.) | 3aab/% |
---|---|---|---|---|
1 | CH2Cl2 | -78 ℃ to r.t. | 1.3 | n.d.c,d |
2 | CH2Cl2 | -78 ℃ to r.t. | 1.3 | 60 |
3 | CH2Cl2 | -78 ℃ to r.t. | 1.5 | 40 |
4 | CH2Cl2 | -78 ℃ to r.t. | 1.7 | 30 |
5 | CH2Cl2 | -78 ℃ to r.t. | 2.1 | 30 |
6 | CH2Cl2 | -78 ℃ to r.t. | 2.3 | 20 |
7 | THF | -78 ℃ to r.t. | 1.3 | Trace |
8 | Cyclohexane | -78 ℃ to r.t. | 1.3 | 57 |
9 | n-Heptane | -78 ℃ to r.t. | 1.3 | 61 |
10 | toluene | -78 ℃ to r.t. | 1.3 | 60 |
11 | n-Hexane | -78 ℃ to r.t. | 1.3 | 67 |
12 | n-Hexane | -78 ℃ to r.t. | 1.0 | 29 |
13 | n-Hexane | -78 ℃ to r.t. | 1.1 | 34 |
14 | n-Hexane | -78 ℃ to r.t. | 1.5 | 52 |
15 | n-Hexane | -78 ℃ to r.t. | 1.7 | 56 |
16 | n-Hexane | -78 ℃ to r.t. | 2.0 | 69 |
17 | n-Hexane | -78 ℃ to r.t. | 2.2 | 24 |
18 | n-Hexane | -60 ℃ to r.t. | 2.0 | 66 |
19 | n-Hexane | -40 ℃ to r.t. | 2.0 | 73 |
20 | n-Hexane | -20 ℃ to r.t. | 2.0 | 64 |
21 | n-Hexane | 0 ℃ to r.t. | 2.0 | 52 |
22 | n-Hexane | 60 ℃ | 2.0 | 70 |
23 | n-Hexane | 70 ℃ | 2.0 | 61 |
[1] |
Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2002, 102, 2523.
pmid: 12105935 |
[2] |
Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
doi: 10.1021/cr800332c pmid: 18986207 |
[3] |
Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
doi: 10.1021/acs.chemrev.5b00547 pmid: 26861673 |
[4] |
Koposov, A. Y.; Netzel, B. C.; Yusubov, M. S.; Nemykin, V. N.; Nazarenko, A. Y.; Zhdankin, V. V. Eur. J. Org. Chem. 2007, 2007, 4475.
doi: 10.1002/ejoc.200700625 |
[5] |
Yusubov, M. S.; Yusubova, R. Y.; Funk, T. V.; Chi, K.-W.; Zhdankin, V. V. Synthesis 2009, 2009, 2505.
doi: 10.1055/s-0029-1216870 |
[6] |
Miyamoto, K.; Yokota, Y.; Suefuji, T.; Yamaguchi, K.; Ozawa, T.; Ochiai, M. Chem.-Eur. J. 2014, 20, 5447.
doi: 10.1002/chem.201304961 |
[7] |
Chen, H.; Wang, L.; Han, J. Org. Lett. 2020, 22, 3581.
doi: 10.1021/acs.orglett.0c01024 |
[8] |
Chen, H.; Han, J.; Wang, L. Angew. Chem., Int. Ed. 2018, 57, 12313.
doi: 10.1002/anie.201806405 |
[9] |
Linde, E.; Bulfield, D.; Kervefors, G.; Purkait, N.; Olofsson, B. Chem 2022, 8, 850.
doi: 10.1016/j.chempr.2022.01.009 |
[10] |
Greaney, M. F.; Motherwell, W. B. Tetrahedron Lett. 2000, 41, 4463.
|
[11] |
Ochiai, M.; Miyamoto, K. Eur. J. Org. Chem. 2008, 2008, 4229.
doi: 10.1002/ejoc.200800416 |
[12] |
Seebach, D. Angew. Chem., nt. Ed. 1979, 18, 239.
|
[13] |
Baragwanath, L.; Rose, C. A.; Zeitler, K.; Connon, S. J. J. Org. Chem. 2009, 74, 9214.
doi: 10.1021/jo902018j pmid: 19950884 |
[14] |
Desvergnes, S.; Py, S.; Vallée, Y. J. Org. Chem. 2005, 70, 1459.
pmid: 15704985 |
[15] |
Exner, C. J.; Laclef, S.; Poli, F.; Turks, M.; Vogel, P. J. Org. Chem. 2011, 76, 840.
doi: 10.1021/jo102035d |
[16] |
Izquierdo, J.; Hutson, G. E.; Cohen, D. T.; Scheidt, K. A. Angew. Chem., nt. Ed. 2012, 51, 11686.
|
[17] |
De Joarder, D.; Jennings, M. P. Eur. J. Org. Chem. 2015, 2015, 3303.
doi: 10.1002/ejoc.201500287 |
[18] |
Canesi, S. Synlett 2019, 30, 647.
doi: 10.1055/s-0037-1610340 |
[19] |
Xi, Y.-K.; Zhang, H.; Li, R.-X.; Kang, S.-Y.; Li, J.; Li, Y. Chem.-Eur. J. 2019, 25, 3005.
doi: 10.1002/chem.201806411 |
[20] |
Eisenberger, P.; Gischig, S.; Togni, A. Chem.-Eur. J. 2006, 12, 2579.
pmid: 16402401 |
[21] |
Liu, T.; Shen, Q. Org. Lett. 2011, 13, 2342.
doi: 10.1021/ol2005903 |
[22] |
Wang, F.; Wang, D.; Mu, X.; Chen, P.; Liu, G. J. Am. Chem. Soc. 2014, 136, 10202.
doi: 10.1021/ja504458j pmid: 24983408 |
[23] |
Ge, J.; Ding, Q.; Wang, X.; Peng, Y. J. Org. Chem. 2020, 85, 7658.
doi: 10.1021/acs.joc.9b03470 |
[24] |
Brand, J. P.; Charpentier, J.; Waser, J. Angew. Chem., nt. Ed. 2009, 48, 9346.
|
[25] |
Fernández González, D.; Brand, J. P.; Waser, J. Chem.-Eur. J. 2010, 16, 9457.
doi: 10.1002/chem.201001539 pmid: 20645361 |
[26] |
Frei, R.; Waser, J. J. Am. Chem. Soc. 2013, 135, 9620.
doi: 10.1021/ja4044196 |
[27] |
Chen, C. C.; Waser, J. Chem. Commun. 2014, 50, 12923.
doi: 10.1039/C4CC06851C |
[28] |
Chen, C. C.; Waser, J. Org. Lett. 2015, 17, 736.
doi: 10.1021/acs.orglett.5b00015 |
[29] |
Zhdankin, V. V.; Krasutsky, A. P.; Kuehl, C. J.; Simonsen, A. J.; Woodward, J. K.; Mismash, B.; Bolz, J. T. J. Am. Chem. Soc. 1996, 118, 5192.
doi: 10.1021/ja954119x |
[30] |
Deng, Q.-H.; Bleith, T.; Wadepohl, H.; Gade, L. H. J. Am. Chem. Soc. 2013, 135, 5356.
doi: 10.1021/ja402082p |
[31] |
Zhang, B.; Studer, A. Org. Lett. 2013, 15, 4548.
doi: 10.1021/ol402106x pmid: 23930944 |
[32] |
Vita, M. V.; Waser, J. Org. Lett. 2013, 15, 3246.
doi: 10.1021/ol401229v |
[33] |
Vita, M. V.; Caramenti, P.; Waser, J. Org. Lett. 2015, 17, 5832.
doi: 10.1021/acs.orglett.5b03002 |
[34] |
Frei, R.; Courant, T.; Wodrich, M. D.; Waser, J. Chem.-Eur. J. 2015, 21, 2662.
doi: 10.1002/chem.201406171 |
[35] |
Le Vaillant, F.; Wodrich, M. D.; Waser, J. Chem. Sci. 2017, 8, 1790.
doi: 10.1039/c6sc04907a pmid: 28451301 |
[36] |
Egami, H.; Shimizu, R.; Sodeoka, M. Tetrahedron Lett. 2012, 53, 5503.
doi: 10.1016/j.tetlet.2012.07.134 |
[37] |
Janson, P. G.; Ghoneim, I.; Ilchenko, N. O.; Szabó, K. J. Org. Lett. 2012, 14, 2882.
doi: 10.1021/ol3011419 pmid: 22612441 |
[38] |
Egami, H.; Kawamura, S.; Miyazaki, A.; Sodeoka, M. Angew. Chem.,Int. Ed. 2013, 52, 7841.
doi: 10.1002/anie.201303350 |
[39] |
Hari, D. P.; Waser, J. J. Am. Chem. Soc. 2016, 138, 2190.
doi: 10.1021/jacs.6b00278 |
[40] |
Bertho, S.; Rey-Rodriguez, R.; Colas, C.; Retailleau, P.; Gillaizeau, I. Chem.-Eur. J. 2017, 23, 17674.
doi: 10.1002/chem.201704499 |
[41] |
Wu, D.; Cui, S.-S.; Lin, Y.; Li, L.; Yu, W. J. Org. Chem. 2019, 84, 10978.
doi: 10.1021/acs.joc.9b01569 |
[42] |
Banerjee, S.; Senthilkumar, B.; Patil, N. T. Org. Lett. 2019, 21, 180.
doi: 10.1021/acs.orglett.8b03651 |
[43] |
Amos, S. G. E.; Nicolai, S.; Waser, J. Chem. Sci. 2020, 11, 11274.
doi: 10.1039/D0SC03655B |
[44] |
Jia, Z.; Gálvez, E.; Sebastián, R. M.; Pleixats, R.; Álvarez-Larena, Á.; Martin, E.; Vallribera, A.; Shafir, A. Angew. Chem., nt. Ed. 2014, 53, 11298.
|
[45] |
Wu, Y.; Arenas, I.; Broomfield, L. M.; Martin, E.; Shafir, A. Chem.-Eur. J. 2015, 21, 18779.
doi: 10.1002/chem.201503987 |
[46] |
Tian, J.; Luo, F.; Zhang, C.; Huang, X.; Zhang, Y.; Zhang, L.; Kong, L.; Hu, X.; Wang, Z.-X.; Peng, B. Angew. Chem., nt. Ed. 2018, 57, 9078.
|
[47] |
Zhao, W.; Huang, X.; Zhan, Y.; Zhang, Q.; Li, D.; Zhang, Y.; Kong, L.; Peng, B. Angew. Chem., nt. Ed. 2019, 58, 17210.
|
[48] |
Sousa e Silva, F. C.; Van, N. T.; Wengryniuk, S. E. J. Am. Chem. Soc. 2020, 142, 64.
doi: 10.1021/jacs.9b11282 |
[49] |
Tian, J.; Luo, F.; Zhang, Q.; Liang, Y.; Li, D.; Zhan, Y.; Kong, L.; Wang, Z.-X.; Peng, B. J. Am. Chem. Soc. 2020, 142, 6884.
doi: 10.1021/jacs.0c00783 |
[50] |
Bhujanga Rao, C.; Yuan, J.; Zhang, Q.; Zhang, R.; Zhang, N.; Fang, J.; Dong, D. J. Org. Chem. 2018, 83, 2904.
doi: 10.1021/acs.joc.8b00114 |
[51] |
Yu, J.; Tian, J.; Zhang, C. Adv. Synth. Catal. 2010, 352, 531.
doi: 10.1002/adsc.200900737 |
[52] |
Liu, W.-B.; Chen, C.; Zhang, Q.; Zhu, Z.-B. Beilstein J. Org. Chem. 2011, 7, 1436.
doi: 10.3762/bjoc.7.167 |
[53] |
Lee, J.; Oya, S.; Snyder, J. K. Tetrahedron Lett. 1991, 32, 5899.
doi: 10.1016/S0040-4039(00)79421-4 |
[54] |
Wang, D.; Xu, C.; Zhang, L.; Luo, S. Org. Lett. 2015, 17, 576.
doi: 10.1021/ol503592n |
[55] |
Lloris, M. E.; Gálvez, N.; Marquet, J.; Moreno-Mañas, M. Tetrahedron 1991, 47, 8031.
doi: 10.1016/S0040-4020(01)81955-4 |
[56] |
Terent’ev, A. O.; Vil’, V. A.; Nikishin, G. I.; Adam, W. Synlett 2015, 26, 802.
doi: 10.1055/s-0034-1379982 |
[57] |
Terent'ev, A. O.; Vil', V. A.; Gorlov, E. S.; Nikishin, G. I.; Pivnitsky, K. K.; Adam, W. J. Org. Chem. 2016, 81, 810.
doi: 10.1021/acs.joc.5b02233 |
[58] |
Bityukov, O. V.; Matveeva, O. K.; Vil', V. A.; Kokorekin, V. A.; Nikishin, G. I.; Terent'ev, A. O. J. Org. Chem. 2019, 84, 1448.
doi: 10.1021/acs.joc.8b02791 pmid: 30618255 |
[59] |
Zhang, C.; Chen, X.-M.; Luo, Y.; Li, J.-L.; Chen, M.; Hai, L.; Wu, Y. ACS Sustainable Chem. Eng. 2018, 6, 13473.
doi: 10.1021/acssuschemeng.8b03399 |
[60] |
Dar'in, D.; Kantin, G.; Krasavin, M. Chem. Commun. 2019, 55, 5239.
doi: 10.1039/C9CC02042J |
[61] |
Wang, X.; Ding, Y.; Tao, Y.; Wang, Z.; Wang, Z.; Yan, J. Polym. Chem. 2020, 11, 1708.
doi: 10.1039/D0PY00185F |
[62] |
Zhu, J.; Germain, A. R.; Porco Jr, J. A. Angew. Chem.,Int. Ed. 2004, 43, 1239.
doi: 10.1002/anie.200353037 |
[63] |
Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., nt. Ed. 2011, 50, 5331.
|
[64] |
Reddi, R. N.; Prasad, P. K.; Sudalai, A. Org. Lett. 2014, 16, 5674.
doi: 10.1021/ol5027393 |
[65] |
Mao, J.; Liu, D.; Li, Y.; Zhao, J.; Rong, G.; Yan, H.; Zhang, G. Catal. Commun. 2015, 70, 62.
doi: 10.1016/j.catcom.2015.07.013 |
[66] |
Chang, L.-M.; Yuan, G.-Q. Tetrahedron 2016, 72, 7003.
doi: 10.1016/j.tet.2016.09.031 |
[67] |
Li, C.; Jin, T.; Zhang, X.; Li, C.; Jia, X.; Li, J. Org. Lett. 2016, 18, 1916.
doi: 10.1021/acs.orglett.6b00749 |
[68] |
Li, J.; Yang, Z.; Yang, T.; Yi, J.; Zhou, C. New J. Chem. 2018, 42, 1581.
doi: 10.1039/C7NJ03989A |
[69] |
Mizar, P.; Wirth, T. Angew. Chem.,Int. Ed. 2014, 53, 5993.
doi: 10.1002/anie.201400405 |
[70] |
Iinuma, M.; Moriyama, K.; Togo, H. Eur. J. Org. Chem. 2014, 2014, 772.
doi: 10.1002/ejoc.201301466 |
[71] |
Harper, M. J.; Emmett, E. J.; Bower, J. F.; Russell, C. A. J. Am. Chem. Soc. 2017, 139, 12386.
doi: 10.1021/jacs.7b06668 |
[72] |
Revol-Cavalier, J.; Bultel-Poncé, V.; Guy, A.; Durand, T.; Oger, C.; Galano, J.-M. Org. Lett. 2020, 22, 7455.
doi: 10.1021/acs.orglett.0c02553 pmid: 32937076 |
[1] | 王翱, 肖永龙, 周宇, 徐进宜, 柳红. 氮杂环卡宾催化有机反应的研究进展[J]. 有机化学, 2017, 37(10): 2590-2608. |
[2] | 于凤丽, 鲁玉倩, 袁冰, 解从霞, 于世涛. N-杂环卡宾催化对氟硝基苯和苯甲醛的亲核酰基化反应研究[J]. 有机化学, 2015, 35(10): 2223-2228. |
[3] | 黄丹,鄢明c,沈琪. 重氮化合物与醇的插入反应合成α-烷氧基-β-二羰基化合物[J]. 有机化学, 2007, 27(06): 739-743. |
[4] | 于海珠,傅尧,刘磊,郭庆祥. 经过极性反转的亲核有机催化[J]. 有机化学, 2007, 27(05): 545-564. |
[5] | 孙小宇,吴劼,. N-杂环卡宾: 一种多用途有机小分子催化剂[J]. 有机化学, 2006, 26(06): 745-756. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||