有机化学 ›› 2023, Vol. 43 ›› Issue (11): 3876-3887.DOI: 10.6023/cjoc202303022 上一篇 下一篇
研究论文
张越华a,c,d, 聂飞c,d, 周路c,d, 王晓烽c,d, 刘源c,d,*(), 霍延平c,e, 陈文铖c,d,*(), 赵祖金b,*()
收稿日期:
2023-03-15
修回日期:
2023-05-30
发布日期:
2023-07-12
基金资助:
Yuehua Zhanga,c,d, Fei Niec,d, Lu Zhouc,d, Xiaofeng Wangc,d, Yuan Liuc,d(), Yanping Huoc,e, Wencheng Chenc,d(), Zujin Zhaob()
Received:
2023-03-15
Revised:
2023-05-30
Published:
2023-07-12
Contact:
E-mail: Supported by:
文章分享
以苯并噻唑-2-基(苯基)甲酮作为受体, 具有强给电子能力的吩噁嗪和吩噻嗪作为给体构筑给体-受体(D-A)型分子, 设计合成了两种具有聚集诱导发光(AIE)特性的热活化延迟荧光(TADF)红光材料3和4, 并对它们的热稳定性、电化学性质、单晶结构、光物理性质和电致发光性能进行了系统研究. 两种化合物具有较小的单三线态能级差(ΔEST, 0.04和0.16 eV)以及微秒级延迟寿命(0.63和1.30 μs), 表现出明显的TADF特性. 通过对比化合物在粉末状态下研磨前后的发射光谱, 发现化合物4具有明显的力致变色发光现象. 在纯薄膜下, 两种化合物的发射峰分别为683和654 nm, 光致发光量子产率(PLQY)分别为0.8%和3.6%. 基于化合物3和4的非掺杂有机发光二极管(OLED)器件, 均获得了纯红光发射(662和652 nm), 器件的最大外量子效率(EQE)分别为0.15%和0.34%. 虽然基于这两种化合物的器件发光效率有待提升, 但它们的合成过程简便, 能为开发苯并噻唑酮类TADF红光材料提供一定的启发.
张越华, 聂飞, 周路, 王晓烽, 刘源, 霍延平, 陈文铖, 赵祖金. 苯并噻唑酮类热活化延迟荧光材料的合成及其光电性能研究[J]. 有机化学, 2023, 43(11): 3876-3887.
Yuehua Zhang, Fei Nie, Lu Zhou, Xiaofeng Wang, Yuan Liu, Yanping Huo, Wencheng Chen, Zujin Zhao. Synthesis and Optoelectronic Studies of Thermally Activated Delayed Fluorescence Materials Based on Benzothiazolyl Ketones[J]. Chinese Journal of Organic Chemistry, 2023, 43(11): 3876-3887.
Compd. | λabs/nm | λPL/nm | PLQY/% | τp/ns | τd/μs | Td/Tg | ES1/ET1 | EHOMO/ELUMO |
---|---|---|---|---|---|---|---|---|
3 | 317/458a | 586a, 683b, 630c | 0.8b, 10.0c | 9.15c | 0.63c | 338/57 | 2.26/2.22c | –5.15/–2.91d |
4 | 304/389a | 440/605a, 654b, 609c | 3.6b, 45.9c | 21.8c | 1.30c | 351/66 | 2.69/2.53c | –5.14/–2.33d |
Compd. | λabs/nm | λPL/nm | PLQY/% | τp/ns | τd/μs | Td/Tg | ES1/ET1 | EHOMO/ELUMO |
---|---|---|---|---|---|---|---|---|
3 | 317/458a | 586a, 683b, 630c | 0.8b, 10.0c | 9.15c | 0.63c | 338/57 | 2.26/2.22c | –5.15/–2.91d |
4 | 304/389a | 440/605a, 654b, 609c | 3.6b, 45.9c | 21.8c | 1.30c | 351/66 | 2.69/2.53c | –5.14/–2.33d |
Temperature/K | τp/ns | τd/μs | Ratio/% | |||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 3 | 4 | 3 | 4 | |||
300 | 9.15 | 21.8 | 0.63 | 1.30 | 68/32 | 48/52 | ||
200 | 9.45 | 26.6 | 0.94 | 1.50 | 66/34 | 54/46 | ||
100 | 8.43 | 28.0 | 1.17 | 1.39 | 61/38 | 68/32 |
Temperature/K | τp/ns | τd/μs | Ratio/% | |||||
---|---|---|---|---|---|---|---|---|
3 | 4 | 3 | 4 | 3 | 4 | |||
300 | 9.15 | 21.8 | 0.63 | 1.30 | 68/32 | 48/52 | ||
200 | 9.45 | 26.6 | 0.94 | 1.50 | 66/34 | 54/46 | ||
100 | 8.43 | 28.0 | 1.17 | 1.39 | 61/38 | 68/32 |
Device | Von/V | Lmax/(cd•m–2) | Maximum value/the value at 1000 cd•m–2 | λEL/nm | CIE (x, y) | Roll-off of EQE/% | ||
---|---|---|---|---|---|---|---|---|
CE/(cd•A–1) | PE/(lm•W–1) | EQE/% | ||||||
A | 4.0 | 283 | 0.11/— | 0.07/— | 0.15/— | 662 | (0.604, 0.364) | — |
B | 3.8 | 2729 | 1.48/1.17 | 1.11/0.51 | 1.10/0.87 | 620 | (0.585, 0.412) | 20.9 |
C | 3.8 | 971 | 3.58/— | 2.96/— | 2.15/— | 612 | (0.563, 0.432) | — |
D | 3.8 | 1459 | 5.47/2.54 | 5.46/0.91 | 2.77/1.29 | 600 | (0.539, 0.454) | 53.4 |
E | 3.4 | 26680 | 10.14/9.11 | 8.65/6.22 | 4.42/4.00 | 589 | (0.505, 0.480) | 9.5 |
F | 4.2 | 971 | 0.20/— | 0.15/— | 0.34/— | 652 | (0.609, 0.380) | — |
G | 3.6 | 5073 | 3.40/2.50 | 2.80/1.2 | 1.80/1.30 | 604 | (0.500, 0.455) | 27.8 |
H | 3.8 | 1164 | 5.16/1.61 | 4.27/0.50 | 2.62/0.82 | 604 | (0.499, 0.456) | 68.7 |
I | 3.6 | 1208 | 7.56/1.77 | 6.59/0.59 | 3.45/0.81 | 589 | (0.478, 0.463) | 76.5 |
J | 3.4 | 13950 | 10.42/4.46 | 9.63/2.92 | 4.62/2.00 | 584 | (0.425, 0.461) | 56.7 |
Device | Von/V | Lmax/(cd•m–2) | Maximum value/the value at 1000 cd•m–2 | λEL/nm | CIE (x, y) | Roll-off of EQE/% | ||
---|---|---|---|---|---|---|---|---|
CE/(cd•A–1) | PE/(lm•W–1) | EQE/% | ||||||
A | 4.0 | 283 | 0.11/— | 0.07/— | 0.15/— | 662 | (0.604, 0.364) | — |
B | 3.8 | 2729 | 1.48/1.17 | 1.11/0.51 | 1.10/0.87 | 620 | (0.585, 0.412) | 20.9 |
C | 3.8 | 971 | 3.58/— | 2.96/— | 2.15/— | 612 | (0.563, 0.432) | — |
D | 3.8 | 1459 | 5.47/2.54 | 5.46/0.91 | 2.77/1.29 | 600 | (0.539, 0.454) | 53.4 |
E | 3.4 | 26680 | 10.14/9.11 | 8.65/6.22 | 4.42/4.00 | 589 | (0.505, 0.480) | 9.5 |
F | 4.2 | 971 | 0.20/— | 0.15/— | 0.34/— | 652 | (0.609, 0.380) | — |
G | 3.6 | 5073 | 3.40/2.50 | 2.80/1.2 | 1.80/1.30 | 604 | (0.500, 0.455) | 27.8 |
H | 3.8 | 1164 | 5.16/1.61 | 4.27/0.50 | 2.62/0.82 | 604 | (0.499, 0.456) | 68.7 |
I | 3.6 | 1208 | 7.56/1.77 | 6.59/0.59 | 3.45/0.81 | 589 | (0.478, 0.463) | 76.5 |
J | 3.4 | 13950 | 10.42/4.46 | 9.63/2.92 | 4.62/2.00 | 584 | (0.425, 0.461) | 56.7 |
[1] |
Zhou, J.; Tian, X. Y.; Wang, B. K.; Zhang, S. S.; Liu, Z. H.; Chen, W. Acta Chim. Sinica 2022, 80, 395. (in Chinese)
doi: 10.6023/A21110513 |
(周静, 田雪迎, 王斌凯, 张沙沙, 刘宗豪, 陈炜, 化学学报, 2022, 80, 395.)
doi: 10.6023/A21110513 |
|
[2] |
Liang, Z. P.; Tang, R.; Qiu, Y. C.; Wang, Y.; Lu, H.; Wu, Z. G. Acta Chim. Sinica 2021, 79, 1401. (in Chinese)
doi: 10.6023/A21070355 |
(梁志鹏, 唐瑞, 邱雨晨, 王阳, 陆洪彬, 吴正光, 化学学报, 2021, 79, 1401.)
doi: 10.6023/A21070355 |
|
[3] |
Sun, N.; Jiang, C.; Li, Q.; Tan, D.; Bi, S.; Song, J. J. Mater. Sci.: Mater. Electron. 2020, 31, 20688.
|
[4] |
Yang, X.; Jiao, B.; Dang, J. S.; Sun, Y.; Wu, Y.; Zhou, G.; Wong, W. Y. ACS Appl. Mater. Interfaces 2018, 10, 10227.
doi: 10.1021/acsami.7b18330 |
[5] |
Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
doi: 10.1002/adma.v29.22 |
[6] |
Tao, Y.; Yuan, K.; Chen, T.; Xu, P.; Li, H. H.; Chen, R. F.; Zheng, C.; Zhang, L.; Huang, W. Adv. Mater. 2014, 26: 7931.
doi: 10.1002/adma.v26.47 |
[7] |
Di, B. H.; Chen, Y. L. Chin. Chem. Lett. 2018, 29, 245.
doi: 10.1016/j.cclet.2017.08.043 |
[8] |
Huang, C.; Qiu, Z. P.; Gao, Y.; Chen, W. C.; Ji, S. M.; Huo, Y. P. Chin. J. Org. Chem. 2021, 41, 3050. (in Chinese)
|
(黄酬, 邱志鹏, 高杨, 陈文铖, 籍少敏, 霍延平, 有机化学, 2021, 41, 3050.)
doi: 10.6023/cjoc202101053 |
|
[9] |
Tan, J. H.; Huo, Y. P.; Cai, N.; Ji, S. M.; Li, Z. Z.; Zhang, L. Chin. J. Org. Chem. 2017, 37, 2457. (in Chinese)
|
(谭继华, 霍延平, 蔡宁, 籍少敏, 李宗植, 张力, 有机化学, 2017, 37, 2457.)
doi: 10.6023/cjoc201704015 |
|
[10] |
Sarada, G.; Cho, W.; Maheshwaran, A.; Sree, V. G.; Park, H. Y.; Gal, Y. S.; Song, M.; Jin, S. H. Adv. Funct. Mater. 2017, 27, 1701002.
doi: 10.1002/adfm.v27.27 |
[11] |
Zheng, Y. T.; Zuo, L. Q.; Zhang, L. T.; Huang, Z. H.; Li, S. F.; Yang, Z.; Mao, Z.; Luo, S. L.; Liu, C.; Sun, F. Q.; Shi, G.; Chi, Z. G.; Xu, B. J. Chin. Chem. Lett. 2022, 33, 4536.
doi: 10.1016/j.cclet.2022.01.059 |
[12] |
Cao, H. T.; Hou, P. F.; Cao, Q.; Li, Y. A.; Wang, S. S.; Xie, L. H. Acta Chim. Sinica 2022, 80, 1476. (in Chinese)
doi: 10.6023/A22070335 |
(曹洪涛, 侯鹏飞, 曹庆, 李延昂, 汪莎莎, 解令海, 化学学报, 2022, 80, 1476.)
doi: 10.6023/A22070335 |
|
[13] |
Shi, Q.; Wang, L. Y. Chin. J. Org. Chem. 2022, 42, 1256. (in Chinese)
doi: 10.6023/cjoc202200019 |
(石强, 王乐勇, 有机化学, 2022, 42, 1256.)
doi: 10.6023/cjoc202200019 |
|
[14] |
Guo, J. J.; Zhao, Z. J.; Tang, B. Z. Adv. Opt. Mater. 2018, 6, 1800264.
doi: 10.1002/adom.v6.15 |
[15] |
Sagara, Y.; Shizu, K.; Tanaka, H.; Miyazaki, H.; Goushi, K.; Kaji, H.; Adachi, C. Chem. Lett. 2015, 44, 360.
doi: 10.1246/cl.141054 |
[16] |
Ahn, D. H.; Kim, S. W.; Lee, H.; Ko, I. J.; Karthik, D.; Lee, J. Y.; Kwon, J. H. Nat. Photonics 2019, 13, 540.
doi: 10.1038/s41566-019-0415-5 |
[17] |
Wu, T. L.; Huang, M. J.; Lin, C. C.; Huang, P. Y.; Chou, T. Y.; Chen-Cheng, R. W.; Lin, H. W.; Liu, R. S.; Cheng, C. H. Nat. Photonics 2018, 12, 235.
doi: 10.1038/s41566-018-0112-9 |
[18] |
Bryden, M. A.; Zysman-Colman, E. Chem. Soc. Rev. 2021, 50, 7587.
doi: 10.1039/D1CS00198A |
[19] |
Zhang, T.; Zhou, Z.; Liu, X.; Wang, K.; Fan, Y.; Zhang, C.; Yao, J.; Yan, Y.; Zhao, Y. S. J. Am. Chem. Soc. 2021, 143, 20249.
doi: 10.1021/jacs.1c08824 |
[20] |
Steinegger, A.; Klimant, I.; Borisov, S. M. Adv. Opt. Mater. 2017, 5, 1700372.
doi: 10.1002/adom.v5.18 |
[21] |
Wong, M. Y.; Zysman-Colman, E. Adv. Mater. 2017, 29, 1605444.
doi: 10.1002/adma.v29.22 |
[22] |
Fang, F.; Yuan, Y.; Wan, Y.; Li, J.; Song, Y.; Chen, W.; Zhao, D.; Chi, Y.; Li, M.; Lee, C. Small 2022, 18, 2106215.
doi: 10.1002/smll.v18.6 |
[23] |
Fang, F.; Zhu, L.; Li, M.; Song, Y. Y.; Sun, M.; Zhao, D. G.; Zhang, J. F. Adv. Sci. 2021, 8, 2102970.
doi: 10.1002/advs.v8.24 |
[24] |
Tan, J. M.; Yu, Y. J.; Guan, M.; Zhao, Y. H.; Tang, Z. L.; Zhou, Z. H.; Guo, T. Chin. J. Org. Chem. 2022, 42, 3776. (in Chinese)
doi: 10.6023/cjoc202204038 |
(谭佳敏, 余雅君, 关猛, 赵云辉, 唐子龙, 周智华, 郭涛, 有机化学, 2022, 42, 3776.)
doi: 10.6023/cjoc202204038 |
|
[25] |
Zeng, W.; Lin, M. H.; Zhu, L. Y.; Lin, M. J. Chin. J. Chem. 2022, 40, 39.
doi: 10.1002/cjoc.v40.1 |
[26] |
Ma, H.; Peng, Q.; An, Z.; Huang, W.; Shuai, Z. J. Am. Chem. Soc. 2018, 141, 1010.
doi: 10.1021/jacs.8b11224 |
[27] |
Ma, R.; Ding, Y.; Chen, R.; Wang, Z.; Ma, Y. J. Org. Chem. 2020, 86, 310.
doi: 10.1021/acs.joc.0c02095 |
[28] |
Okazaki, M.; Takeda, Y.; Data, P.; Pander, P.; Higginbotham, H.; Monkman, A. P.; Minakata, S. Chem. Sci. 2017, 8, 2677.
doi: 10.1039/c6sc04863c pmid: 28553504 |
[29] |
Huang, B.; Chen, W. C.; Li, Z. J.; Zhang, J. F.; Zhao, W. J.; Feng, Y.; Tang, B. Z.; Lee, C. S. Angew. Chem., Int. Ed. 2018, 57, 12473.
doi: 10.1002/anie.v57.38 |
[30] |
Xu, B. J.; Mu, Y. X.; Mao, Z.; Xie, Z. L.; Wu, H. Z.; Zhang, Y.; Jin, C. J.; Chi, Z. G.; Liu, S. W.; Xu, J. R.; Wu, Y. C.; Lu, P. Y.; Lien, A.; Bryce, M. R. Chem. Sci. 2016, 7, 2201.
doi: 10.1039/C5SC04155D |
[31] |
Han, M.; Chen, Y.; Xie, Y.; Zhang, F.; Li, Z. Cell Rep. Phys. Sci. 2020, 1, 100252.
|
[32] |
Borowicz, P.; Herbich, J.; Kapturkiewicz, A.; Opallo, M.; Nowacki, J. Chem. Phys. 1999, 249, 49.
doi: 10.1016/S0301-0104(99)00265-7 |
[33] |
Li, S. S.; Huang, X.; Gao, Y. L.; Jin, J. Org. Lett. 2022, 24, 5817.
doi: 10.1021/acs.orglett.2c02364 |
[34] |
Acar, N.; Kurzawa, J.; Fritz, N.; Stockmann, A.; Roman, C.; Schneider, S.; Clark, T. J. Phys. Chem. A 2003, 107, 9530.
doi: 10.1021/jp036250u |
[35] |
Polgar, A. M.; Poisson, J.; Paisley, N. R.; Christopherson, C. J.; Reyes, A. C.; Hudson, Z. M. Macromolecules 2020, 53, 2039.
doi: 10.1021/acs.macromol.0c00287 |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||