有机化学 ›› 2024, Vol. 44 ›› Issue (1): 148-158.DOI: 10.6023/cjoc202306015 上一篇 下一篇
综述与进展
收稿日期:
2023-06-18
修回日期:
2023-08-01
发布日期:
2023-08-22
作者简介:
基金资助:
Wei Zhanga(), Huan Xiaa, Xin Caoa, Binyu Xua, Zhengyun Lib
Received:
2023-06-18
Revised:
2023-08-01
Published:
2023-08-22
Contact:
*E-mail: About author:
Supported by:
文章分享
为了满足多样化的柔性可穿戴电子设备的发展, 需要与之相匹配的供能系统. 柔性锌离子电池因其安全性高、易组装及能量密度高等特点受到广泛关注, 而水凝胶电解质则是柔性锌离子电池中的重要组成部分, 因此受到广泛研究. 综述了水凝胶电解质的可控构筑方法, 详细总结了柔性锌离子电池水凝胶电解质的最新研究成果, 包括力学增强型、自愈合型、低温型和环境响应型水凝胶电解质. 此外, 还对高性能水凝胶电解质的未来发展进行了展望.
章炜, 夏欢, 曹昕, 徐彬瑜, 李峥沄. 柔性锌离子电池水凝胶电解质研究进展[J]. 有机化学, 2024, 44(1): 148-158.
Wei Zhang, Huan Xia, Xin Cao, Binyu Xu, Zhengyun Li. Research Progress on Hydrogel Electrolytes for Flexible Zinc-Ion Batteries[J]. Chinese Journal of Organic Chemistry, 2024, 44(1): 148-158.
水凝胶 | 离子电导率/(mS•cm-1) | 力学性能 | 参考文献 |
---|---|---|---|
聚乙烯醇 | 8.97 | 可弯曲(0~180°) | [ |
黄原胶 | 16.5 | — | [ |
明胶 | 6.15 | 可弯曲、可扭曲、可卷曲, 可剪切及水下工作 | [ |
羧甲基纤维素 | — | 可弯曲(0~180°), 90°弯曲(>3000次) | [ |
聚丙烯酰胺 | — | 可拉伸(1400%~3000 %), 可压缩(0~80 %) | [ |
分层结构(PAM-PAN-Gelatin) | 17.6 | 可弯曲、可扭曲、可卷曲, 最大拉应力7.76 MPa | [ |
聚两性离子(Zwitterionic Sulfobetaine) | 24.6 | 可拉伸(920%) | [ |
水凝胶 | 离子电导率/(mS•cm-1) | 力学性能 | 参考文献 |
---|---|---|---|
聚乙烯醇 | 8.97 | 可弯曲(0~180°) | [ |
黄原胶 | 16.5 | — | [ |
明胶 | 6.15 | 可弯曲、可扭曲、可卷曲, 可剪切及水下工作 | [ |
羧甲基纤维素 | — | 可弯曲(0~180°), 90°弯曲(>3000次) | [ |
聚丙烯酰胺 | — | 可拉伸(1400%~3000 %), 可压缩(0~80 %) | [ |
分层结构(PAM-PAN-Gelatin) | 17.6 | 可弯曲、可扭曲、可卷曲, 最大拉应力7.76 MPa | [ |
聚两性离子(Zwitterionic Sulfobetaine) | 24.6 | 可拉伸(920%) | [ |
[1] |
Zhang, H.; Chen, P.; Xia, H.; Xu, G.; Wang, Y.; Zhang, T.; Sun, W.; Turgunov, M.; Zhang, W.; Sun, Z. Energy Environ. Sci. 2022, 15, 5240.
doi: 10.1039/D2EE02147A |
[2] |
Wu, F.; Tian, Z.; Hu, P.; Tang, J.; Xu, X.; Pan, L.; Liu, J.; Zhang, P.; Sun, Z. Nanoscale 2022, 14, 18133.
doi: 10.1039/D2NR05318G |
[3] |
Xu, C.; Yang, Z.; Zhang, X.; Xia, M.; Yan, H.; Li, J.; Yu, H.; Zhang, L.; Shu, J. Nano-Micro Lett. 2021, 13, 166.
doi: 10.1007/s40820-021-00700-9 |
[4] |
Hu, F.; Wang, X.; Bao, S.; Song, L.; Zhang, S.; Niu, H.; Fan, B.; Zhang, R.; Li, H. Chem. Eng. J. 2022, 440, 135855.
doi: 10.1016/j.cej.2022.135855 |
[5] |
Yang, P.; Li, J.; Lee, S. W.; Fan, H. J. Adv. Sci. 2022, 9, 2103894.
|
[6] |
Zeng, Y.; Liang, J.; Zheng, J.; Huang, Z.; Zhang, X.; Zhu, G.; Wang, Z.; Liang, H.; Zhang, Y.-Z. Appl. Phys. Rev. 2022, 9, 021304.
doi: 10.1063/5.0085301 |
[7] |
Zhu, Y.-H.; Yang, X.-Y.; Liu, T.; Zhang, X.-B. Adv. Mater. 2020, 32, 1901961.
doi: 10.1002/adma.v32.5 |
[8] |
Zhang, H.; Yang, L.; Zhang, P.; Lu, C.; Sha, D.; Yan, B.; He, W.; Zhou, M.; Zhang, W.; Pan, L.; Sun, Z. Adv. Mater. 2021, 33, 2008447.
doi: 10.1002/adma.v33.21 |
[9] |
Zhang, H.; Ren, M.; Jiang, W.; Yao, J.; Pan, L.; Yang, J. J. Alloys Compd. 2021, 887, 161318.
doi: 10.1016/j.jallcom.2021.161318 |
[10] |
Yu, G.; Wang, Y.; Li, K.; Chen, D.; Qin, L.; Xu, H.; Chen, J.; Zhang, W.; Zhang, P.; Sun, Z. Sustainable Energy Fuels 2021, 5, 1211.
doi: 10.1039/D0SE01669A |
[11] |
Pan, L.; Sun, S.; Yu, G.; Liu, X. X.; Feng, S.; Zhang, W. Chem. Eng. J. 2022, 449, 137682.
doi: 10.1016/j.cej.2022.137682 |
[12] |
Zhu, J.; Zhang, Z.; Zhao, S.; Westover, A. S.; Belharouak, I.; Cao, P.-F. Adv. Energy Mater. 2021, 11, 2003836.
|
[13] |
Gao, J.; Wang, C.; Han, D.-W.; Shin, D.-M. Chem. Sci. 2021, 12, 13248.
doi: 10.1039/D1SC04023E |
[14] |
Qiao, J.; Kong, L.; Xu, S.; Lin, K.; He, W.; Ni, M.; Ruan, Q.; Zhang, P.; Liu, Y.; Zhang, W.; Pan, L.; Sun, Z. Energy Storage Mater. 2021, 43, 509.
|
[15] |
Wu, Z.; Ye, F.; Liu, Q.; Pang, R.; Liu, Y.; Jiang, L.; Tang, Z.; Hu, L. Adv. Energy Mater. 2022, 12, 2200654.
|
[16] |
Liu, Y.; Lu, X.; Lai, F.; Liu, T.; Shearing, P. R.; Parkin, I. P.; He, G.; Brett, D. J. L. Joule 2021, 5, 2845.
doi: 10.1016/j.joule.2021.10.011 |
[17] |
Huang, S.; Zhu, J.; Tian, J.; Niu, Z. Chem.-Eur. J. 2019, 25, 14480.
doi: 10.1002/chem.v25.64 |
[18] |
Li, X.; Tang, Y.; Lv, H.; Wang, W.; Mo, F.; Liang, G.; Zhi, C.; Li, H. Nanoscale 2019, 11, 17992.
doi: 10.1039/C9NR06721C |
[19] |
Dong, H.; Li, J.; Guo, J.; Lai, F.; Zhao, F.; Jiao, Y.; Brett, D. J. L.; Liu, T.; He, G.; Parkin, I. P. Adv. Mater. 2021, 33, 2007548.
doi: 10.1002/adma.v33.20 |
[20] |
Li, X.; Li, M.; Yang, Q.; Li, H.; Xu, H.; Chai, Z.; Chen, K.; Liu, Z.; Tang, Z.; Ma, L.; Huang, Z.; Dong, B.; Yin, X.; Huang, Q.; Zhi, C. ACS Nano 2020, 14, 541.
doi: 10.1021/acsnano.9b06866 |
[21] |
Liu, H.; Jiang, L.; Cao, B.; Du, H.; Lu, H.; Ma, Y.; Wang, H.; Guo, H.; Huang, Q.; Xu, B.; Guo, S. ACS Nano 2022, 16, 14539.
doi: 10.1021/acsnano.2c04968 |
[22] |
Zhu, J.; Bie, Z.; Cai, X.; Jiao, Z.; Wang, Z.; Tao, J.; Song, W.; Fan, H. J. Adv. Mater. 2022, 34, 2207209.
|
[23] |
Cao, X.; Xia, H.; Zhao, X. Funct. Mater. Lett. 2019, 12, 1930004.
|
[24] |
Xu, S.; Yu, J.-X.; Guo, H.; Tian, S.; Long, Y.; Yang, J.; Zhang, L. Nat. Commun. 2023, 14, 219.
doi: 10.1038/s41467-023-35893-7 |
[25] |
Cong, J.; Shen, X.; Wen, Z.; Wang, X.; Peng, L.; Zeng, J.; Zhao, J. Energy Storage Mater. 2021, 35, 586.
|
[26] |
Zhang, W.; Feng, P.; Chen, J.; Sun, Z.; Zhao, B. Prog. Polym. Sci. 2019, 88, 220.
doi: 10.1016/j.progpolymsci.2018.09.001 |
[27] |
Zhao, D.; Zhu, Y.; Cheng, W.; Chen, W.; Wu, Y.; Yu, H. Adv. Mater. 2021, 33, 2000619.
|
[28] |
Li, X.; Wang, D.; Ran, F. Energy Storage Mater. 2023, 56, 351.
|
[29] |
Liu, C.; Xu, W.; Mei, C.; Li, M.; Chen, W.; Hong, S.; Kim, W.-Y.; Lee, S.; Wu, Q. Adv. Energy Mater. 2021, 11, 2003902.
|
[30] |
Feng, D.; Jiao, Y.; Wu, P. Angew. Chem., Int. Ed. 2023, 62, e202215060.
|
[31] |
Lorca, S.; Santos, F.; Fernández Romero, A. J. Polymers 2020, 12, 2812.
|
[32] |
Mo, F.; Guo, B.; Ling, W.; Wei, J.; Chen, L.; Yu, S.; Liang, G. Batteries 2022, 8, 59.
doi: 10.3390/batteries8060059 |
[33] |
Wang, B.; Li, J.; Hou, C.; Zhang, Q.; Li, Y.; Wang, H. ACS Appl. Mater. Interfaces 2020, 12, 46005.
doi: 10.1021/acsami.0c12313 |
[34] |
Wang, Z.; Li, H.; Tang, Z.; Liu, Z.; Ruan, Z.; Ma, L.; Yang, Q.; Wang, D.; Zhi, C. Adv. Funct. Mater. 2018, 28, 1804560.
doi: 10.1002/adfm.v28.48 |
[35] |
Bashir, S.; Hina, M.; Iqbal, J.; Rajpar, A. H.; Mujtaba, M. A.; Alghamdi, N. A.; Wageh, S.; Ramesh, K.; Ramesh, S. Polymers 2020, 12, 2702.
doi: 10.3390/polym12112702 |
[36] |
Zhao, S.; Zuo, Y.; Liu, T.; Zhai, S.; Dai, Y.; Guo, Z.; Wang, Y.; He, Q.; Xia, L.; Zhi, C.; Bae, J.; Wang, K.; Ni, M. Adv. Energy Mater. 2021, 11, 2101749.
doi: 10.1002/aenm.v11.34 |
[37] |
Huang, S.; Hou, L.; Li, T.; Jiao, Y.; Wu, P. Adv. Mater. 2022, 34, 2110140.
doi: 10.1002/adma.v34.14 |
[38] |
Liu, J.; Long, J.; Shen, Z.; Jin, X.; Han, T.; Si, T.; Zhang, H. Adv. Sci. 2021, 8, 2004689.
doi: 10.1002/advs.v8.8 |
[39] |
Mo, F.; Chen, Z.; Liang, G.; Wang, D.; Zhao, Y.; Li, H.; Dong, B.; Zhi, C. Adv. Energy Mater. 2020, 10, 2000035.
doi: 10.1002/aenm.v10.16 |
[40] |
Abbasi, A.; Xu, Y.; Abouzari-Lotf, E.; Etesami, M.; Khezri, R.; Risse, S.; Kardjilov, N.; Van Tran, K.; Jia, H.; Somwangthanaroj, A.; Manke, I.; Lu, Y.; Kheawhom, S. Electrochim. Acta 2022, 435, 141365.
doi: 10.1016/j.electacta.2022.141365 |
[41] |
Zha, W.; Ruan, Q.; Kong, L.; Xi, X.; Turgunov, M. A.; Zhang, W.; Chang, K.; Sun, Z. Cell Rep. Phys. Sci. 2022, 3, 100863.
|
[42] |
Ji, S.; Qin, J.; Yang, S.; Shen, P.; Hu, Y.; Yang, K.; Luo, H.; Xu, J. Energy Storage Mater. 2023, 55, 236.
|
[43] |
Fu, C.; Wang, Y.; Lu, C.; Zhou, S.; He, Q.; Hu, Y.; Feng, M.; Wan, Y.; Lin, J.; Zhang, Y.; Pan, A. Energy Storage Mater. 2022, 51, 588.
|
[44] |
Yan, C.; Wang, Y.; Chen, Z.; Deng, X. Batteries Supercaps 2021, 4, 1627.
doi: 10.1002/batt.v4.10 |
[45] |
Zhong, X.; Zheng, Z.; Xu, J.; Xiao, X.; Sun, C.; Zhang, M.; Ma, J.; Xu, B.; Yu, K.; Zhang, X.; Cheng, H.-M.; Zhou, G. Adv. Mater. 2023, 35, 2209980.
doi: 10.1002/adma.v35.13 |
[46] |
Xiao, X.; Zheng, Z.; Zhong, X.; Gao, R.; Piao, Z.; Jiao, M.; Zhou, G. ACS Nano 2023, 17, 1764.
doi: 10.1021/acsnano.2c09509 |
[47] |
Liu, Y.; Wang, W.; Gu, K.; Yao, J.; Shao, Z.; Chen, X. ACS Appl. Mater. Interfaces 2021, 13, 29008.
doi: 10.1021/acsami.1c09006 |
[48] |
Shui, T.; Chae, M.; Bressler, D. C. Coatings 2020, 10, 630.
doi: 10.3390/coatings10070630 |
[49] |
Shui, T.; Pan, M.; Lu, Y.; Zhang, J.; Liu, Q.; Nikrityuk, P. A.; Tang, T.; Liu, Q.; Zeng, H. J. Colloid Interface Sci. 2022, 612, 445.
doi: 10.1016/j.jcis.2021.12.146 |
[50] |
Liu, Z.; Wang, R.; Ma, Q.; Kang, H.; Zhang, L.; Zhou, T.; Zhang, C. Carbon Neutralization 2022, 1, 126.
doi: 10.1002/cnl2.v1.2 |
[51] |
Wu, T.; Ji, C.; Mi, H.; Guo, F.; Guo, G.; Zhang, B.; Wu, M. J. Mater. Chem. A 2022, 10, 25701.
doi: 10.1039/D2TA07410A |
[52] |
Hong, L.; Wu, X.; Liu, Y.-S.; Yu, C.; Liu, Y.; Sun, K.; Shen, C.; Huang, W.; Zhou, Y.; Chen, J.-S.; Wang, K.-X. Adv. Funct. Mater. 2023, 33, 2300952.
doi: 10.1002/adfm.v33.29 |
[53] |
Qin, Y.; Li, H.; Han, C.; Mo, F.; Wang, X. Adv. Mater. 2022, 34, 2207118.
doi: 10.1002/adma.v34.44 |
[54] |
Bashir, T.; Zhou, S.; Yang, S.; Ismail, S. A.; Ali, T.; Wang, H.; Zhao, J.; Gao, L. Energy Rev. 2023, 6, 5.
|
[55] |
Fan, Z.; He, W.; Ni, M.; Zhang, P.; Tian, W.; Zhang, W.; Pan, L.; Sun, Z. Energy Technol. 2021, 9, 2000829.
doi: 10.1002/ente.v9.2 |
[56] |
Sha, D.; Lu, C.; He, W.; Ding, J.; Zhang, H.; Bao, Z.; Cao, X.; Fan, J.; Dou, Y.; Pan, L.; Sun, Z. ACS Nano 2022, 16, 2711.
doi: 10.1021/acsnano.1c09639 |
[57] |
Ye, T.; Wang, J.; Jiao, Y.; Li, L.; He, E.; Wang, L.; Li, Y.; Yun, Y.; Li, D.; Lu, J.; Chen, H.; Li, Q.; Li, F.; Gao, R.; Peng, H. Adv. Mater. 2022, 34, 2105120.
doi: 10.1002/adma.v34.4 |
[58] |
Yang, J.-L.; Li, J.; Zhao, J.-W.; Liu, K.; Yang, P.; Fan, H. J. Adv. Mater. 2022, 34, 2202382.
doi: 10.1002/adma.v34.27 |
[59] |
Chen, R.; Liu, Q.; Xu, L.; Zuo, X.; Liu, F.; Zhang, J.; Zhou, X.; Mai, L. ACS Energy Lett. 2022, 7, 1719.
doi: 10.1021/acsenergylett.2c00124 |
[60] |
Zhang, H.; Gan, X.; Song, Z.; Zhou, J. Angew. Chem., Int. Ed. 2023, 62, e202217833.
|
[61] |
Wen, T.; Qu, B.; Tan, S.; Huang, G.; Song, J.; Wang, Z.; Wang, J.; Tang, A.; Pan, F. Energy Storage Mater. 2023, 55, 816.
|
[62] |
Chan, C. Y.; Wang, Z.; Li, Y.; Yu, H.; Fei, B.; Xin, J. H. ACS Appl. Mater. Interfaces 2021, 13, 30594.
doi: 10.1021/acsami.1c05941 |
[63] |
Gong, J. p.; Katsuyama, Y.; Kurokawa, T.; Osada, Y. Adv. Mater. 2003, 15, 1155.
doi: 10.1002/adma.v15:14 |
[64] |
Chen, Y.; Ma, J.; Li, D.; Zhu, C.; Zhang, W.; Miao, C. J. Alloys Compd. 2021, 888, 161555.
doi: 10.1016/j.jallcom.2021.161555 |
[65] |
Zeng, Y.; Zhang, X.; Meng, Y.; Yu, M.; Yi, J.; Wu, Y.; Lu, X.; Tong, Y. Adv. Mater. 2017, 29, 1700274.
|
[66] |
Zhang, S.; Yu, N.; Zeng, S.; Zhou, S.; Chen, M.; Di, J.; Li, Q. J. Mater. Chem. A 2018, 6, 12237.
doi: 10.1039/C8TA04298E |
[67] |
Wan, F.; Zhang, L.; Dai, X.; Wang, X.; Niu, Z.; Chen, J. Nat. Commun. 2018, 9, 1656.
doi: 10.1038/s41467-018-04060-8 |
[68] |
Zhang, Q.; Li, C.; Li, Q.; Pan, Z.; Sun, J.; Zhou, Z.; He, B.; Man, P.; Xie, L.; Kang, L.; Wang, X.; Yang, J.; Zhang, T.; Shum, P. P.; Li, Q.; Yao, Y.; Wei, L. Nano Lett. 2019, 19, 4035.
doi: 10.1021/acs.nanolett.9b01403 |
[69] |
Wang, Z.; Mo, F.; Ma, L.; Yang, Q.; Liang, G.; Liu, Z.; Li, H.; Li, N.; Zhang, H.; Zhi, C. ACS Appl. Mater. Interfaces 2018, 10, 44527.
doi: 10.1021/acsami.8b17607 |
[70] |
Wang, J.; Liu, J.; Hu, M.; Zeng, J.; Mu, Y.; Guo, Y.; Yu, J.; Ma, X.; Qiu, Y.; Huang, Y. J. Mater. Chem. A 2018, 6, 11113.
doi: 10.1039/C8TA03143F |
[71] |
Li, H.; Han, C.; Huang, Y.; Huang, Y.; Zhu, M.; Pei, Z.; Xue, Q.; Wang, Z.; Liu, Z.; Tang, Z.; Wang, Y.; Kang, F.; Li, B.; Zhi, C. Energy Environ. Sci. 2018, 11, 941.
doi: 10.1039/C7EE03232C |
[72] |
Leng, K.; Li, G.; Guo, J.; Zhang, X.; Wang, A.; Liu, X.; Luo, J. Adv. Funct. Mater. 2020, 30, 2001317.
doi: 10.1002/adfm.v30.23 |
[73] |
Liu, Y.; Gao, A.; Hao, J.; Li, X.; Ling, J.; Yi, F.; Li, Q.; Shu, D. Chem. Eng. J. 2023, 452, 139605.
doi: 10.1016/j.cej.2022.139605 |
[74] |
Huang, S.; Wan, F.; Bi, S.; Zhu, J.; Niu, Z.; Chen, J. Angew. Chem., Int. Ed. 2019, 58, 4313.
doi: 10.1002/anie.v58.13 |
[75] |
Sarmah, D.; Karak, N. Carbohydr. Polym. 2022, 289, 119428.
|
[76] |
Pei, X.; Zhang, H.; Zhou, Y.; Zhou, L.; Fu, J. Mater. Horiz. 2020, 7, 1872.
doi: 10.1039/D0MH00361A |
[77] |
Li, Q.; Cui, X.; Pan, Q. ACS Appl. Mater. Interfaces 2019, 11, 38762.
doi: 10.1021/acsami.9b13553 |
[78] |
Huang, S.; He, S.; Li, Y.; Wang, S.; Hou, X. Chem. Eng. J. 2023, 464, 142607.
doi: 10.1016/j.cej.2023.142607 |
[79] |
Fu, Q.; Hao, S.; Meng, L.; Xu, F.; Yang, J. ACS Nano 2021, 15, 18469.
doi: 10.1021/acsnano.1c08193 |
[80] |
Xu, G.; Xia, H.; Chen, P.; She, W.; Zhang, H.; Ma, J.; Ruan, Q.; Zhang, W.; Sun, Z. Adv. Funct. Mater. 2022, 32, 2109597.
|
[81] |
Zhao, J.; Sonigara, K. K.; Li, J.; Zhang, J.; Chen, B.; Zhang, J.; Soni, S. S.; Zhou, X.; Cui, G.; Chen, L. Angew. Chem., Int. Ed. 2017, 56, 7871.
doi: 10.1002/anie.v56.27 |
[82] |
Zhu, J.; Yao, M.; Huang, S.; Tian, J.; Niu, Z. Angew. Chem., Int. Ed. 2020, 59, 16480.
doi: 10.1002/anie.v59.38 |
[83] |
Yang, P.; Feng, C.; Liu, Y.; Cheng, T.; Yang, X.; Liu, H.; Liu, K.; Fan, H. J. Adv. Energy Mater. 2020, 10, 2002898.
doi: 10.1002/aenm.v10.48 |
[84] |
Eric, H.; Li, H.; Adulhakem, Y. E. RSC Adv. 2019, 9, 32047.
doi: 10.1039/C9RA06785J |
No related articles found! |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||