有机化学 ›› 2025, Vol. 45 ›› Issue (11): 4178-4184.DOI: 10.6023/cjoc202504028 上一篇    下一篇

研究论文

键锁N-苯基咔唑分子内旋转制备超长室温磷光聚合物

张念双, 秦玉静, 王硕博, 梁于, 杨文君, 孙其坤*(), 薛善锋*()   

  1. 青岛科技大学高分子科学与工程学院 橡塑材料与工程教育部重点实验室 山东省橡塑材料与工程重点实验室 山东青岛 266042
  • 收稿日期:2025-04-27 修回日期:2025-05-28 发布日期:2025-07-17
  • 作者简介:
    共同第一作者
  • 基金资助:
    国家自然科学基金(52273183); 山东省自然科学基金(ZR2020QE083); 及山东省泰山学者人才工程(tsqn202211164)

Locking up Internal Rotation of N-Phenylcarbazole in Advance to Endow Ultralong Room Temperature Phosphorescence (RTP) Afterglows in Polymers

Nianshuang Zhang, Yujing Qin, Shuobo Wang, Yu Liang, Wenjun Yang, Qikun Sun*(), Shanfeng Xue*()   

  1. Shandong Provincial Key Laboratory of Rubber-Plastics, Key Laboratory of Rubber-Plastics of Ministry of Education, School of Polymer Science & Engineering, Qingdao University of Science &Technology, Qingdao, Shandong 266042
  • Received:2025-04-27 Revised:2025-05-28 Published:2025-07-17
  • Contact: *E-mail: qksun@qust.edu.cn; sfxue@qust.edu.cn
  • About author:
    The authors contributed equally to this work
  • Supported by:
    National Natural Science Foundation of China(52273183); Natural Science Foundation of Shandong Province(ZR2020QE083); Taishan Scholar Constructive Engineering Foundation of Shandong Province(tsqn202211164)

共轭有机主链的内旋转严重阻碍了超长室温磷光(RTP)材料的构筑, 使得在非晶态聚合物中实现超过2 s的超长RTP寿命极为罕见. 通过将N-(溴苯基)咔唑环化, 预先键锁苯基咔唑的内旋转, 并将所得的含氮杂环化合物掺杂到聚甲基丙烯酸甲酯(PMMA)中. 结果表明, 键锁分子内旋转可实现寿命超过2 s的超长RTP聚合物, 而未键锁的分子在PMMA中却几乎不发射RTP. 另外高能态三重态激子可以将能量转移给低能态的有机荧光染料, 从而轻松实现并获得持久的多色余辉材料, 包括白光发射. 本工作揭示了一种有效且可扩展的掺杂分子策略, 用于开发高性能超长有机RTP聚合物.

关键词: 化学键锁, 分子内旋转, 超长余辉, 磷光聚合物

Internal rotation of conjugated organic backbone seriously impaired room temperature phosphorescence (RTP), leading to rare realization of ultra-long afterglows with RTP lifetimes over 2 s in non-bibulous polymers. Herein, N-(bromo- phenyl)carbazoles are cyclized to lock up phenyl-carbazol internal rotation in advance and the fused nitrogen hetero-cyclic compounds are doped into poly(methyl methacrylate) (PMMA). The results show that locking up the molecular internal rotation can achieve ultra-long RTP polymers with lifetimes over 2 s, in contrast, the unlocked molecules hardly emit RTP in PMMA. The high-lying triplet excitons can transfer the energy to low-lying organic fluorescent dyes, and the persistent multi- color afterglows including white emission can be readily modulated. This work discloses an effective and extendable dopant molecular strategy for developing high-performance ultra-long organic RTP polymers.

Key words: chemical locking, internal rotation, ultra-long afterglows, room temperature phosphorescence (RTP) polymer