[1] (a) "Hypervalent Iodine Chemistry:Modern Developments in Organic Synthesis" in Topics in Current Chemistry, Vol. 373, Ed.:Wirth, T., Springer-Verlag, Switzerland, 2016,
(b) Zhdankin, V. V.; Stang, P. J. Chem. Rev. 2008, 108, 5299.
(c) Charpentier, J.; Früh, N.; Togni, A. Chem. Rev. 2015, 115, 650.
(d) Yoshimura, A.; Zhdankin, V. V. Chem. Rev. 2016, 116, 3328.
(e) Duan, Y.-N.; Jiang, S.; Han, Y.-C.; Sun, B.; Zhang, C. Chin. J. Org. Chem. 2016, 36, 1973(in Chinese). (段亚南, 姜山, 韩永超, 孙博, 张弛, 有机化学, 2016, 36, 1973.)
(f) Zhang, H.; Tang, R.; Wu, J.; Hu, Y. Chemistry 2018, 681(in Chinese). (张怀远, 唐蓉萍, 伍家卫, 胡雨来, 化学通报, 2018, 681.)
(g) Ma, J.; Chen, L.; Yuan, Z.; Cheng, H. Chin. J. Org. Chem. 2018, 38, 1586(in Chinese). (马姣丽, 陈立成, 袁中文, 程辉成, 有机化学, 2018, 38, 1586.)
(h) Yan, Y.; Cui, C.; Li, Z. Chin. J. Org. Chem. 2018, 38, 2501(in Chinese). (闫溢哲, 崔畅, 李政, 有机化学, 2018, 38, 2501.)
[2] (a) Muñiz, K.; Barreiro, L.; Romero, R. M.; Martínez, C. J. Am. Chem. Soc. 2017, 139, 4354.
(b) Fujita, M.; Miura, K.; Sugimura, T. Beilstein J. Org. Chem. 2018, 14, 659.
(c) Banik, S. M.; Mennie, K. M.; Jacobsen, E. N. J. Am. Chem. Soc. 2017, 139, 9152.
[3] Smith, D. C.; Vitaku, E.; Njardarson, J. T. Org. Lett. 2017, 19, 3508.
[4] Hori, M.; Guo, J.-D.; Yanagi, T.; Nogi, K.; Sasamori, T.; Yorimitsu, H. Angew. Chem., Int. Ed. 2018, 57, 4663.
[5] (a) Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu. Y. J. Org. Chem. 2017, 82, 1600.
(b) Chi, Y.; Zhang, W.-X.; Xi, Z. Org. Lett. 2014, 16, 6274.
(c) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Chem.-Eur. J. 2017, 23, 757.
(d) Chi, Y.; Yan, H.; Zhang, W.-X.; Xi, Z. Org. Lett. 2017, 19, 2694.
(e) Alazet, S.; Vaillant, F. L.; Nicolai, S.; Courant, T.; Waser, J. Chem.-Eur. J. 2017, 23, 9501.
(f) Colomer, I.; Batchelor-McAuley, C.; Odell, B.; Donohoe, T. J.; Compton, R. G. J. Am. Chem. Soc. 2016, 138, 8855.
(g) Shen, H.; Deng, Q.; Liu, R.; Feng, Y.; Zheng, C.; Xiong, Y. Org. Chem. Front. 2017, 4, 1806.
(h) Wang, Z.; Zhong, J.; Zheng, C.; Fan, R. Org. Chem. Front. 2017, 4, 1005.
[6] Zhang, H.; Huang, D.; Wang, K.-H.; Li, J.; Su, Y.; Hu, Y. Org. Biomol. Chem. 2017, 15, 5337.
[7] Pluta, R.; Krach, P. E.; Cavallo, L.; Falivene, L.; Rueping, M. ACS Catal. 2018, 8, 2582.
[8] Zhang, H.; Wang, K.-H.; Wang, J.; Su, Y.; Huang, D.; Hu, Y. Org. Biomol. Chem. 2019, 17, 2940.
[9] Brown, M.; Kumar, R.; Rehbein, J.; Wirth, T. Chem.-Eur. J. 2016, 22, 4030.
[10] Haubenreisser, S.; Wöste, T. H.; Martínez, C.; Ishihara, K.; Muñiz, K. Angew. Chem., Int. Ed. 2016, 55, 413.
[11] Martínez, C.; Bosnidou, A. E.; Allmendinger, S.; Muñiz, K. Chem.- Eur. J. 2016, 22, 9929.
[12] Zhdankin, V. V. Hypervalent Iodine Chemistry:Preparation, Structure, and Synthetic Applications of Polyvalent Iodine Compounds, John Wiley & Sons, Chichester, UK, 2013, pp. 21~143.
[13] (a) Yang, Q.-L.; Wang, X.-Y.; Lu, J.-Y.; Zhang, L.-P.; Fang, P.; Mei, T.-S. J. Am. Chem. Soc. 2018, 140, 11487.
(b) Xiong, P.; Xu, H.-H.; Song, J.; Xu, H.-C. J. Am. Chem. Soc. 2018, 140, 2460.
(c) Yan, M.; Kawamata, Y.; Baran, P. S. Angew. Chem., Int. Ed. 2018, 57, 4149.
(d) Möhle, S.; Zirbes, M.; Rodrigo, E.; Gieshoff, T.; Wiebe, A.; Waldvogel, S. R. Angew. Chem., Int. Ed. 2018, 57, 6018.
(e) Elsherbini, M.; Wirth, T. Chem.-Eur. J. 2018, 24, 13399.
(f) Zhang, Z.; Zhang, L.; Cao, Y.; Li, F.; Bai, G.; Liu, G.; Yang, Y.; Mo, F. Org. Lett. 2019, 21, 762.
(g) Chang, X.; Zhang, Q.; Guo, C. Org. Lett. 2019, 21, 10.
(h) Lian, F.; Sun, C.; Xu, K.; Zeng, C. Org. Lett. 2019, 21, 156.
[14] Stuart, D. R. Synlett 2017, 28, 275.
[15] (a) Bielawski, M.; Olofsson, B. Chem. Commun. 2007, 2521.
(b) Bielawski, M.; Zhu, M.; Olofsson, B. Adv. Synth. Catal. 2007, 349, 2610.
(c) Bielawski, M.; Aili, D.; Olofsson, B. J. Org. Chem. 2008, 73, 4602.
(d) Merritt, E. A.; Olofsson, B. Angew. Chem., Int. Ed. 2009, 48, 9052.
(e) Jalalian, N.; Olofsson, B. Tetrahedron 2010, 66, 5793.
(f) Bouma, M. J.; Olofsson, B. Chem.-Eur. J. 2012, 18, 14242.
[16] (a) Lindstedt, E.; Reitti, M.; Olofsson, B. J. Org. Chem. 2017, 82, 11909.
(b) Laudadio, G.; Gemoets, H. P. L.; Hessel, V.; Noël, T. J. Org. Chem. 2017, 82, 11735.
[17] Miller, L. L.; Hoffmann, A. K. J. Am. Chem. Soc. 1967, 89, 593.
[18] Hoffelner, H.; Lorch, H. W.; Wendt, H. J. Electroanal. Chem. 1975, 66, 183.
[19] (a) Peacock, M. J.; Pletcher, D. Tetrahedron Lett. 2000, 41, 8995.
(b) Peacock, M. J.; Pletcher, D. J. Electrochem. Soc. 2001, 148, D37.
[20] (a) Folgueiras-Amador, A. A.; Philipps, K.; Guilbaud, S.; Poelakker, J.; Wirth, T. Angew. Chem., Int. Ed. 2017, 56, 15446.
(b) Folgueiras-Amador, A. A.; Qian, X.-Y.; Xu, H.-C.; Wirth, T. Chem.-Eur. J. 2018, 24, 487.
(c) Pletcher, D.; Green, R. A.; Brown, R. C. D. Chem. Rev. 2018, 118, 4573.
(d) Folgueiras-Amador, A. A.; Wirth, T. J. Flow Chem. 2017, 7, 94.
(e) Watts, K.; Gattrell, W.; Wirth, T. Beilstein J. Org. Chem. 2011, 7, 1108.
[21] Schmidt, H.; Meinert, H. Angew. Chem. 1960, 72, 109.
[22] Rozhkov, I. N. Russ. Chem. Rev. 1976, 45, 615.
[23] Fuchigami, T.; Fujita, T. J. Org. Chem. 1994, 59, 7190.
[24] Francke, R.; Little, R. D. Chem. Soc. Rev. 2014, 43, 2492.
[25] Fujita, T.; Fuchigami, T. Tetrahedron Lett. 1996, 37, 4725.
[26] Hara, S.; Hatakeyama, T.; Chen, S.-Q.; Ishi-i, K.; Yoshida, M.; Sawaguchi, M.; Fukuhara, T.; Yoneda, N. J. Fluorine Chem. 1998, 87, 189.
[27] Haupt, J. D.; Berger, M.; Waldvogel, S. R. Org. Lett. 2019, 21, 242.
[28] (a) Sawamura, T.; Kuribayashi, S.; Inagi, S.; Fuchigami, T. Adv. Synth. Catal. 2010, 352, 2757.
(b) Sawamura, T.; Kuribayashi S.; Inagi, S.; Fuchigami, T. Org. Lett. 2010, 12, 644.
[29] (a) Amano, Y.; Nishiyama, S. Tetrahedron Lett. 2006, 47, 6505.
(b) Nishihama, Y.; Amano, Y.; Ogamino, T.; Nishiyama, S. Electrochemistry 2006, 74, 609.
(c) Kajiyama, D.; Saitoh, T.; Nishiyama, S. Electrochemistry 2013, 81, 319.
[30] (a) Amano, Y.; Nishiyama, S. Heterocycles 2008, 75, 1997.
(b) Amano, Y.; Inoue, K.; Nishiyama, S. Synlett 2008, 134.
(c) Izawa, T.; Nishiyama, S.; Yamamura, S. Tetrahedron 1994, 50, 13593.
(d) Faulkner, D. J. Nat. Prod. Rep. 2001, 18, 1.
(e) Inoue, K.; Ishikawa, Y.; Nishiyama, S. Org. Lett. 2010, 12, 436.
(f) Kajiyama, D.; Saitoh, T.; Yamaguchi, S.; Nishiyama, S. Synthesis 2012, 44, 1667.
(g) Kajiyama, D.; Inoue, K.; Ishikawa, Y.; Nishiyama, S. Tetrahedron 2010, 66, 9779.
[31] Möckel, R.; Babaoglu, E.; Hilt, G. Chem.-Eur. J. 2018, 24, 15781.
[32] (a) Broese, T.; Francke, R. Org. Lett. 2016, 18, 5896.
(b) Koleda, O.; Broese, T.; Noetzel, J.; Roemelt, M.; Suna, E.; Francke, R. J. Org. Chem. 2017, 82, 11669. |