有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3437-3455.DOI: 10.6023/cjoc202205006 上一篇    下一篇

综述与进展

杂原子掺杂共轭碳纳米环的合成与性质研究进展

张慧君, 林建斌*()   

  1. 厦门大学化学化工学院 厦门 361005
  • 收稿日期:2022-05-04 修回日期:2022-06-14 发布日期:2022-06-29
  • 通讯作者: 林建斌
  • 基金资助:
    国家自然科学基金(22071208); 国家自然科学基金(22171237); 厦门市青年创新基金(3502Z20206058)

Syntheses and Properties of Heteroatom-Doped Conjugated Nanohoops

Huijun Zhang, Jianbin Lin()   

  1. College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005
  • Received:2022-05-04 Revised:2022-06-14 Published:2022-06-29
  • Contact: Jianbin Lin
  • Supported by:
    Natural Science Foundation of China(22071208); Natural Science Foundation of China(22171237); Youth Innovation foundation of Xiamen City(3502Z20206058)

设计与合成具有特定结构的大环化合物既是超分子化学研究的一个重点, 也是合成化学与材料化学领域的重要机遇和挑战. 作为碳纳米管的最小片段, 径向共轭碳纳米环及环带结构引起化学家广泛的研究兴趣, 催生系列自下而上的精确合成策略, 但这些纳米环及环带大多仅由苯和简单多环芳烃基元组成, 其光电性质调控主要依赖环尺寸的变化, 限制了后续的功能开发及应用. 在此基础上, 近年来, 结构与性质更加多元的杂原子掺杂碳纳米环逐渐成为新的研究热点. 围绕含杂原子共轭碳纳米环的设计、合成与性质研究展开, 重点介绍了引入芳杂环单元如吡啶、噻吩、呋喃、咔唑、苯并噻二唑、屈并二噻吩、1,2-硼氮芳杂环、二酮吡咯并吡咯、卟啉、苝二酰亚胺、萘并二噻吩二酰亚胺等对纳米环性质的影响, 特别是: (1)杂原子引入对纳米环光谱和氧化还原电势的影响; (2)纳米环拓扑结构的变化引起组装行为的改变, 进而带来新性质. 杂原子掺杂共轭纳米环的设计与合成既可为有机光电材料研究提供理想骨架, 同时也为多功能超分子体系的可控构建提供新基元.

关键词: 碳纳米环, 径向共轭, 芳杂环, 杂原子掺杂

As structural models for carbon nanotube segments, radially conjugated carbon nanohoops have received much attention from chemists, which led to a series of bottom-up synthetic strategies. However, most of these nanohoops are composed only of benzene and simple polyaromatic hydrocarbon moieties. Modulation of the optoelectronic properties is mainly dependent on the variation of ring size, which greatly limits the functional development and application of conjugated nanohoops. In recent years, syntheses and property study of heteroatom-doped carbon nanohoops have become a new research hotspot. The design, synthesis and properties of conjugated nanohoops involving heterocyclic subunits such as pyridine, thiophene, furan, carbazole, benzothiadiazole, chrysenylene, 1,2-azaborine heterocycle, diketopyrrolopyrrole, porphyrin, perylene diimide, and naphthodithiophene diimide, etc. are reviewed. Most of these nanohoops have special topological structures. The introduction of heteroatoms not only significantly improves their optoelectronic properties, but also regulates their assembly, leading to new skeletons for multifunctional supramolecular systems and organic materials.

Key words: carbon nanohoops, radial conjugation, aromatic heterocycle, heteroatom-doping