有机化学 ›› 2022, Vol. 42 ›› Issue (11): 3880-3889.DOI: 10.6023/cjoc202206014 上一篇 下一篇
研究简报
收稿日期:
2022-06-14
修回日期:
2022-07-01
发布日期:
2022-07-20
通讯作者:
陈建新
基金资助:
Junfei Li, Yuling Han, Yanhong Liu, Jianxin Chen()
Received:
2022-06-14
Revised:
2022-07-01
Published:
2022-07-20
Contact:
Jianxin Chen
Supported by:
文章分享
用氨甲酰基硅烷作氨甲酰基源, 对α-硝基-2-烯酸乙酯进行直接氨酰基化反应, 在不加催化剂温和条件下, 可以53%~96%的分离收率得到β-硝基酰胺衍生物. 此方法底物(或官能团)适用范围广, 在双键上可连接脂肪烃基、芳香烃基、杂芳香烃基和不饱和芳香烃基. 通过不同结构的氨甲酰基硅烷的选择, 此方法可合成β-硝基叔酰胺和甲氧甲基保护的仲酰胺衍生物. 该合成方法具有反应条件温和、产物收率较高、副产物较少、立体选择性较强以及后处理容易等优点, 既是一种制备β-硝基酰胺衍生物的新方法, 也是进一步合成具有潜在应用价值的β-氨基酰胺的新方法.
李俊飞, 韩宇玲, 刘艳红, 陈建新. 基于氨甲酰基硅烷的β-硝基酰胺衍生物的合成[J]. 有机化学, 2022, 42(11): 3880-3889.
Junfei Li, Yuling Han, Yanhong Liu, Jianxin Chen. Synthesis of β-Nitroamide Derivatives Based on Carbamoylsilane[J]. Chinese Journal of Organic Chemistry, 2022, 42(11): 3880-3889.
Entry | Solvent | Temp./℃ | Timea/h | Yieldb,c/% |
---|---|---|---|---|
1 | CH2Cl2 | 35 | 21 | 45 |
2 | THF | 60 | 10 | 69 |
3 | MeCN | 60 | 11 | 63 |
4 | PhH | 60 | 12 | 73 |
5 | PhMe | 60 | 9 | 85 |
6 | PhMe | 80 | 8 | 80 |
7 | PhMe | 100 | 7 | 74 |
Entry | Solvent | Temp./℃ | Timea/h | Yieldb,c/% |
---|---|---|---|---|
1 | CH2Cl2 | 35 | 21 | 45 |
2 | THF | 60 | 10 | 69 |
3 | MeCN | 60 | 11 | 63 |
4 | PhH | 60 | 12 | 73 |
5 | PhMe | 60 | 9 | 85 |
6 | PhMe | 80 | 8 | 80 |
7 | PhMe | 100 | 7 | 74 |
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
---|---|---|---|---|---|---|---|
1 | | | | 10 | 83 | ||
2 | | | | 18 | 89 | ||
3 | | | | 25 | 64 | ||
4 | | | | 23 | 76 | ||
5 | | | | 27 | 75 | ||
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
6 | | | | 9 | 85 | ||
7 | | | | 8 | 95 | ||
8 | | | | 6 | 96 | ||
9 | | | | 9 | 80 | ||
10 | | | | 13 | 79 | ||
11 | | | | 7 | 82 | ||
12 | | | | 6 | 85 | ||
13 | | | | 19 | 53 | ||
14 | | | | 17 | 64 | ||
15 | | | | 10 | 68 | ||
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
16 | | | | 10 | 80 | ||
17 | | | | 8 | 82 | ||
18 | | | | 15 | 71 |
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
---|---|---|---|---|---|---|---|
1 | | | | 10 | 83 | ||
2 | | | | 18 | 89 | ||
3 | | | | 25 | 64 | ||
4 | | | | 23 | 76 | ||
5 | | | | 27 | 75 | ||
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
6 | | | | 9 | 85 | ||
7 | | | | 8 | 95 | ||
8 | | | | 6 | 96 | ||
9 | | | | 9 | 80 | ||
10 | | | | 13 | 79 | ||
11 | | | | 7 | 82 | ||
12 | | | | 6 | 85 | ||
13 | | | | 19 | 53 | ||
14 | | | | 17 | 64 | ||
15 | | | | 10 | 68 | ||
Entry | β-Nitroalkene | Carbamoylsilane | Product | Timea/h | Yieldb,c/% | ||
16 | | | | 10 | 80 | ||
17 | | | | 8 | 82 | ||
18 | | | | 15 | 71 |
[53] |
Liu, Y.-h.; Ha, Y.-L.; Chen, J.-X. Mendeleev Commun. 2021, 31, 128.
doi: 10.1016/j.mencom.2021.01.041 |
[54] |
Fornicola, R. S.; Oblinger, E.; Montgomery, J. J. Org. Chem. 1998, 63, 3528.
doi: 10.1021/jo980477h |
[55] |
Baichurin, R. I.; Baichurina, L. V.; Aboskalova, N. I.; Berestovitskaya, V. M. Russ. J. Gen. Chem. 2013, 83, 1764.
doi: 10.1134/S1070363213090223 |
[56] |
Cativiela, C.; Ordonez, M.; Viveros-Ceballos, J. L. Tetrahedron 2020, 76, 130875.
doi: 10.1016/j.tet.2019.130875 |
[57] |
Qian, X.-Y.; Xiong, P.; Xu, H.-C. Acta Chim. Sinica 2019, 77, 879. (in Chinese)
doi: 10.6023/A19050193 |
( 钱向阳, 熊鹏, 徐海超, 化学学报 2019, 77, 879.)
doi: 10.6023/A19050193 |
|
[58] |
Han, Y.-Q.; Zhou, T. Chin. J. Chem. 2020, 38, 527.
doi: 10.1002/cjoc.202000041 |
[59] |
Schollkopf, U.; Beckhaus, H. Angew. Chem., Int. Ed. Engl. 1976, 15, 293.
doi: 10.1002/anie.197602931 |
[60] |
Cunico, R. F.; Pandey, R. K. J. Org. Chem. 2005, 70, 9048.
doi: 10.1021/jo0512406 |
[1] |
Ding, R.; Liu, Y.-G.; Han, M.-R.; Jiao, W.-Y.; Li, J.-Q.; Tian, Y.-H.; Sun, B.-G. J. Org. Chem. 2018, 83, 12939.
doi: 10.1021/acs.joc.8b02190 pmid: 30240220 |
[2] |
Reddy, D.; Fronczek, F. R.; Watkins, E. B. Org. Lett. 2016, 18, 5620.
doi: 10.1021/acs.orglett.6b02848 |
[3] |
Reddy, M. D.; Watkins, E. B. J. Org. Chem. 2015, 80, 11447.
doi: 10.1021/acs.joc.5b02138 |
[4] |
Roy, S.; Roy, S.; Gribble, G. W. Tetrahedron 2012, 68, 9867.
doi: 10.1016/j.tet.2012.08.065 |
[5] |
Luszczki, J. J.; Swiader, M. J.; Swiader, K.; Paruszewski, R.; Turski, W. A.; Czuczwar, S. J. Fund. Clin. Pharmacol. 2008, 22, 69.
|
[6] |
Liu, Q.-C.; Liu, L.-L.; Ranjala, R.; Hendrik, L.; Guo, Y.; Ye, T. Chin. J. Chem. 2020, 38, 1280.
doi: 10.1002/cjoc.202000222 |
[7] |
Bode, J. W.; Sohn, S. S. J. Am. Chem. Soc. 2007, 129, 13798.
doi: 10.1021/ja0768136 |
[8] |
Gunanathan, C.; Ben-David, Y.; Milstein, D. Science 2007, 790.
|
[9] |
Malawska, B. Curr. Top. Med. Chem. 2005, 5, 69.
pmid: 15638779 |
[10] |
Shaabani, A.; Soleimani, E.; Rezayan, A. H. Tetrahedron Lett. 2007, 48, 6137.
doi: 10.1016/j.tetlet.2007.06.136 |
[11] |
Kobayashi, I.; Muraoka, H.; Hasegawa, M.; Saika, T.; Nishida, M.; Kawamura, M.; Ando, R. J. Antimicrob. Chemother. 2002, 50, 129.
doi: 10.1093/jac/dkf106 |
[12] |
Graul, A.; Castaner, J. Drugs Future 1997, 22, 956.
doi: 10.1358/dof.1997.022.09.423212 |
[13] |
Merino, O.; Santoyo, B. M.; Montiel, L. E.; Jiménez-Vázquez, H. A.; Zepeda, L. G.; Tamariz, J. Tetrahedron Lett. 2010, 51, 3738.
doi: 10.1016/j.tetlet.2010.05.034 |
[14] |
Najera, C.; Sansano, J. M. Chem. Rev. 2007, 107, 4584.
doi: 10.1021/cr050580o |
[15] |
Tanaka, H.; Kuroda, A.; Marusawa, H.; Kino, T.; Goto, T.; Hashimoto, M.; Taga, T. J. Am. Chem. Soc. 1987, 109, 5031.
doi: 10.1021/ja00250a050 |
[16] |
Montalban, A. G.; Boman, E.; Chang, C. D.; Ceide, S. C.; Dahl, R.; Dalesandro, D.; Delaet, N. G. J.; Erb, E.; Ernst, J. T.; Gibbs, A.; Kahl, J.; Kessler, L.; Kucharski, J.; Lum, C.; Lundstroem, J.; Miller, S.; Nakanishi, H.; Roberts, E.; Saiah, E.; Sullivan, R.; Urban, J.; Wang, Z.; Larson, C. J. Bioorg. Med. Chem. Lett. 2010, 20, 4819.
doi: 10.1016/j.bmcl.2010.06.102 pmid: 20663667 |
[17] |
Ghosh, T.; Maity, P.; Ranu, B. J. Org. Chem. 2018, 83, 11758.
doi: 10.1021/acs.joc.8b01654 |
[18] |
He, Z.-Y.; Guo, J.-Y.; Tian, S.-K. Adv. Synth. Catal. 2018, 360, 1544.
doi: 10.1002/adsc.201800012 |
[19] |
Dong, H.; Hou, M.-F. Chin. J. Org. Chem. 2017, 37, 267. (in Chinese)
doi: 10.6023/cjoc201608014 |
( 董浩, 侯梅芳, 有机化学 2017, 37, 267.)
doi: 10.6023/cjoc201608014 |
|
[20] |
Akerbladh, L.; Schembri, L. S.; Larhed, M.; Odell, L. R. J. Org. Chem. 2017, 82, 12520.
doi: 10.1021/acs.joc.7b02294 |
[21] |
Mane, R. S.; Bhanage, B. M. J. Org. Chem. 2016, 81, 1223.
doi: 10.1021/acs.joc.5b02385 |
[22] |
Sasaki, M.; Ando, M.; Kawahata, M.; Yamaguchi, K.; Takeda, K. Org. Lett. 2016, 18, 1598.
doi: 10.1021/acs.orglett.6b00455 |
[23] |
Fan, W.-Z.; Shi, D.-Y.; Feng, B.-N. Tetrahedron Lett. 2015, 56, 4638.
doi: 10.1016/j.tetlet.2015.06.021 |
[24] |
Giustiniano, M.; Mercalli, V.; Cassese, H.; Maro, S. D.; Galli, U.; Novellino, E.; Tron, G. C. J. Org. Chem. 2014, 79, 6006.
doi: 10.1021/jo5005444 |
[25] |
Wang, Y.-Y.; Liu, Y.-Y. Acta Chim. Sinica 2019, 77, 418. (in Chinese)
doi: 10.6023/A19020061 |
( 王昱赟, 刘云云, 化学学报 2019, 77, 418.)
doi: 10.6023/A19020061 |
|
[26] |
Liu, L.; Du, L.; Zhang, D.-N.; Du, Y.-F.; Zhao, K. Org. Lett. 2014, 16, 5772.
doi: 10.1021/ol502834g pmid: 25343425 |
[27] |
Mupparapu, N.; Khan, S.; Battula, S.; Kushwaha, M.; Gupta, A. P.; Ahmed, Q. N.; Vishwakarma, R. A. Org. Lett. 2014, 16, 1152.
doi: 10.1021/ol5000204 pmid: 24490591 |
[28] |
Cunico, R. F.; Chen, J.-X. Synth. Commun. 2003, 33, 1963.
doi: 10.1081/SCC-120020211 |
[29] |
Yao, Y.; Li, W.-T.; Chen, J.-X. Chin. J. Org. Chem. 2014, 34, 2124. (in Chinese)
doi: 10.6023/cjoc201404048 |
( 姚远, 李伟东, 陈建新, 有机化学 2014, 34, 2124.)
doi: 10.6023/cjoc201404048 |
|
[30] |
Yao, Y.; Tong, W.-T.; Chen, J.-X. Mendeleev Commun. 2014, 24, 176.
doi: 10.1016/j.mencom.2014.04.018 |
[31] |
Chen, X.-J.; Chen, J.-X. Mendeleev Commun. 2013, 23, 106.
doi: 10.1016/j.mencom.2013.03.019 |
[32] |
Cao, P.; Wen, X.-P.; Chen, J.-X. Synlett 2017, 28, 353.
doi: 10.1055/s-0036-1588346 |
[33] |
Li, W.-D.; Han, S.-H.; Liu, Y.-H.; Chen, J.-X. Chin. J. Org. Chem. 2017, 37, 2423. (in Chinese)
doi: 10.6023/cjoc201703018 |
( 李伟东, 韩生华, 刘艳红, 陈建新, 有机化学 2017, 37, 2423.)
doi: 10.6023/cjoc201703018 |
|
[34] |
Zhang, P.-P.; Chen, W.-W.; Feng, H.; Chen, J.-X. Chin. J. Org. Chem., 2019, 39, 3560. (in Chinese)
doi: 10.6023/cjoc201906033 |
( 张鹏鹏, 陈雯雯, 冯花, 陈建新, 有机化学 2019, 39, 3560.)
doi: 10.6023/cjoc201906033 |
|
[35] |
Li, W.-D.; Han, Y.-L.; Chen, J.-X. Tetrahedron 2017, 73, 5813.
doi: 10.1016/j.tet.2017.08.035 |
[36] |
Zhang, P.-P.; Han, S.-H.; Chen, J.-X. Chin. J. Org. Chem. 2020, 40, 1737. (in Chinese)
doi: 10.6023/cjoc202001020 |
( 张鹏鹏, 韩生华, 陈建新, 有机化学 2020, 40, 1737.)
doi: 10.6023/cjoc202001020 |
|
[37] |
Liu, H.; Guo, Q.-L.; Chen, J.-X. Tetrahedron Lett. 2015, 56, 5747.
doi: 10.1016/j.tetlet.2015.09.022 |
[38] |
Guo, Q.-L.; Wen, X.-P.; Chen, J.-X. Tetrahedron 2016, 72, 8117.
doi: 10.1016/j.tet.2016.10.066 |
[39] |
Han, Y.-L.; Tong, W.-T.; Liu, H.; Chen, J.-X. Chin. J. Org. Chem. 2018, 38, 1993. (in Chinese)
doi: 10.6023/cjoc201803054 |
( 韩宇玲, 仝文婷, 刘慧, 陈建新, 有机化学 2018, 38, 1993.)
doi: 10.6023/cjoc201803054 |
|
[40] |
Guo, Q. L.; Zhao, M. G.; Chen, J. X. Tetrahedron 2020, 76, 131476.
doi: 10.1016/j.tet.2020.131476 |
[41] |
Tong, W.-T. ; Cao, P. ; Liu, Y.-H. Chen, J- X. J. Org. Chem. 2017, 82, 11603.
doi: 10.1021/acs.joc.7b01028 |
[42] |
Wen, X.-P.; Chen, W. W.; Chen, J.-X. Appl.Organometal Chem. 2019, 33, e5147.
|
[43] |
Zhang, W- J.; Cao, P.; Guo, Q.-L.; Chen, J.-X. Curr. Org. Synth. 2017, 14, 1067.
|
[44] |
Zhang, W-J.; Han, S.-H.; Chen, J.-X. Synth. Commun. 2017, 47, 704.
doi: 10.1080/00397911.2017.1281958 |
[45] |
Ma, F.; Liu, H.; Chen, J.-X. Tetrahedron Lett. 2016, 57, 5246.
doi: 10.1016/j.tetlet.2016.10.040 |
[46] |
Han, Y. L.; Li, Y. P.; Han, S.-H.; Chen, J.-X. Synthesis, 2019, 51, 2977.
doi: 10.1055/s-0037-1611778 |
[47] |
Cunico, R. F.; Motta, A. R. Org. Lett. 2005, 7, 771.
doi: 10.1021/ol040066p |
[48] |
Asahara, H.; Sofue, A.; Kuroda, Y. Nishiwaki, N. J. Org. Chem. 2018, 83, 13691
doi: 10.1021/acs.joc.8b01865 |
[49] |
Weiner, B.; Szymanski, W.; Janssen, D. B.; Minnaard, A. J.; Feringa, B. L. Chem. Soc. Rev. 2010, 39, 1656.
doi: 10.1039/b919599h |
[50] |
Cheng, R. P.; Gellman, S. H.; DeGrado, W. F. Chem. Rev. 2001, 101, 3219.
pmid: 11710070 |
[51] |
Lelais, G.; Seebach, D. Biopolymers 2004, 76, 206.
doi: 10.1002/bip.20088 |
[52] |
Vicario, J. L.; Badia, D.; Carrillo, L. Org. Lett. 2001, 3, 773.
pmid: 11259059 |
[1] | 王君姣, 吕瑜瑜, 尚永伟, 崔振丽, 王克虎, 黄丹凤, 胡雨来. α-羟基酮类化合物参与的反应研究进展[J]. 有机化学, 2022, 42(8): 2300-2321. |
[2] | 王文鹏, 杨春红, 刘海超, 王喜存, 权正军. 温和条件下苯炔与2-羟基嘧啶加成合成2-芳氧基嘧啶类衍生物[J]. 有机化学, 2022, 42(11): 3835-3842. |
[3] | 王硕文, 姜平宇, 李镕, 杨沐阳, 邓国军. 环己酮选择性构建功能芳烃的研究进展[J]. 有机化学, 2022, 42(1): 129-146. |
[4] | 张鹏鹏, 韩生华, 陈建新. 氨甲酰基硅烷作氨酰基源与邻位二酮选择性氨酰化反应合成α-羟基-β-羰基仲(伯)酰胺衍生物[J]. 有机化学, 2020, 40(6): 1737-1744. |
[5] | 罗亮, 曹晓梅, 赖国伟, 刘金香, 罗海清, 路东亮, 张勇. “水上”吡唑啉酮与三氟甲基酮的亲核加成[J]. 有机化学, 2020, 40(5): 1323-1330. |
[6] | 张鹏鹏, 陈雯雯, 冯花, 陈建新. 氨甲酰基硅烷作为氨酰基源合成3-羟基-3-杂环丁基甲酰胺衍生物[J]. 有机化学, 2019, 39(12): 3560-3566. |
[7] | 韩宇玲, 仝文婷, 刘慧, 陈建新. 氨甲酰基硅烷作为氨酰基源合成α-磺酰氨基酰胺衍生物[J]. 有机化学, 2018, 38(8): 1993-2001. |
[8] | 王晶晶, 李峰, 徐妍, 王娟, 武紫燕, 杨成玉, 刘澜涛. 水相催化3,5-二烷基-4-硝基异噁唑与三氟甲基酮的亲核加成反应[J]. 有机化学, 2018, 38(5): 1155-1164. |
[9] | 李伟东, 韩生华, 刘艳红, 陈建新. 氨甲酰基硅烷与α-羰基酯反应合成α-硅氧基-α-烷氧羰基酰胺衍生物[J]. 有机化学, 2017, 37(9): 2423-2429. |
[10] | 谢先涛, 景羽, 许胜, 丁凯. 6-取代-3-胺基雌激素的高效合成[J]. 有机化学, 2017, 37(3): 767-772. |
[11] | 赵飞飞, 伍宏伟, 刘传祥, 毛海舫. 基于芳基炔醛共轭延伸的1,8-萘酰亚胺的高选择性比色和荧光氰离子探针[J]. 有机化学, 2016, 36(11): 2689-2694. |
[12] | 姚远, 李伟东, 仝文婷, 陈建新. 氨甲酰基硅烷与醛反应直接合成α-羟基酰胺[J]. 有机化学, 2015, 35(1): 223-227. |
[13] | 姚远, 李伟东, 陈建新. 氨甲酰基硅烷与酮反应合成α-硅氧基酰胺衍生物[J]. 有机化学, 2014, 34(10): 2124-2129. |
[14] | 王小勇, 李治章, 张卫军, 王勰, 陈锦杨, 李宁波, 邱仁华, 许新华. 氢氧化铯催化端炔氢硒化: 高立体区域选择性合成(E)-1-芳硒基烯烃[J]. 有机化学, 2013, 33(03): 558-561. |
[15] | 谭平, 李宁波, 许新华. 高立体、区域选择性合成(Z)-1-芳硫基-2-芳硒基烯[J]. 有机化学, 2012, 32(11): 2162-2165. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||