有机化学 ›› 2023, Vol. 43 ›› Issue (7): 2447-2453.DOI: 10.6023/cjoc202210006 上一篇 下一篇
研究论文
收稿日期:
2023-05-20
修回日期:
2023-06-06
发布日期:
2023-06-13
通讯作者:
曾小明
基金资助:
Sha Wang, Changpeng Chen, Xiaoming Zeng()
Received:
2023-05-20
Revised:
2023-06-06
Published:
2023-06-13
Contact:
Xiaoming Zeng
Supported by:
文章分享
报道了金属铬催化炔烃的硼氢化反应. 廉价易得的三氯化铬在4,4'-二叔丁基-2,2'-联吡啶配体及单质镁的还原作用下表现出高反应活性, 催化实现了频哪醇硼烷与炔烃加成的硼氢化反应, 为室温条件下制备烯基硼化合物提供了一条有效的合成策略.
王莎, 陈常鹏, 曾小明. 联吡啶配体促进铬催化炔烃的顺式硼氢化反应[J]. 有机化学, 2023, 43(7): 2447-2453.
Sha Wang, Changpeng Chen, Xiaoming Zeng. Bipyridine Ligand-Promoted cis-Selective Hydroboration of Alkynes with Chromium Catalysis[J]. Chinese Journal of Organic Chemistry, 2023, 43(7): 2447-2453.
[1] |
Miyaura, N.; Suzuki, A. Chem. Rev. 1995, 95, 2457.
doi: 10.1021/cr00039a007 |
[2] |
(a) Roscales, S.; Csaký, A. G. Chem. Soc. Rev. 2014, 43, 8215.
doi: 10.1039/c4cs00195h pmid: 25181967 |
(b) Leonori, D.; Aggarwal, V. K. Angew. Chem. Int. Ed. 2015, 54, 1082.
doi: 10.1002/anie.201407701 pmid: 25181967 |
|
[3] |
(a) Revunova, K.; Nikonov, G. I. Dalton Trans. 2015, 44, 840.
doi: 10.1039/c4dt02024c pmid: 25384615 |
(b) Rochat, R.; Lopez, M. J.; Tsurugi, H.; Mashima, K. ChemCatChem 2016, 8, 10.
doi: 10.1002/cctc.v8.1 pmid: 25384615 |
|
[4] |
(a) Arrowsmith, M.; Hadlington, T. J.; Hill, M. S.; KociokKohn, G. Chem. Commun. 2012, 48, 4567.
doi: 10.1039/c2cc30565h pmid: 23307492 |
(b) Arrowsmith, M.; Hill, M. S.; Kociok-Kchn, G. Chem.-Eur. J. 2013, 19, 2776.
doi: 10.1002/chem.201203190 pmid: 23307492 |
|
(c) Mukherjee, D.; Ellern, A.; Sadow, A. D. Chem. Sci. 2014, 5, 959.
doi: 10.1039/C3SC52793J pmid: 23307492 |
|
(d) Fohlmeister, L.; Stasch, A. Chem. Eur. J. 2016, 22, 10235.
doi: 10.1002/chem.v22.29 pmid: 23307492 |
|
[5] |
(a) Kim, H. R.; Yun, J. Chem. Commun. 2011, 47, 2943.
doi: 10.1039/C0CC04496B pmid: 30942593 |
(b) Yuan, W.; Ma, S. Org. Biomol. Chem. 2012, 10, 7266.
doi: 10.1039/c2ob26147b pmid: 30942593 |
|
(c) Hall, J. W.; Unson, D. M. L.; Brunel, P.; Collins, L. R.; Cybulski, M. K.; Mahon, M. F.; Whittlesey, M. K. Organometallics 2018, 37, 3102.
doi: 10.1021/acs.organomet.8b00467 pmid: 30942593 |
|
(d) Bao, H.; Zhou, B.; Jin, H.; Liu, Y. J. Org. Chem. 2019, 84, 3579.
doi: 10.1021/acs.joc.9b00321 pmid: 30942593 |
|
(e) Armstrong, M. K.; Lalic, G. J. Am. Chem. Soc. 2019, 141, 6173.
doi: 10.1021/jacs.9b02372 pmid: 30942593 |
|
[6] |
(a) Greenhalgh, M. D.; Thomas, S. P. Chem. Commun. 2013, 49, 11230.
doi: 10.1039/c3cc46727a pmid: 30376317 |
(b) Nakajima, K.; Kato, T.; Nishibayashi, Y. Org. Lett. 2017, 19, 4323.
doi: 10.1021/acs.orglett.7b01995 pmid: 30376317 |
|
(c) Myhill, J. A.; Wilhelmsen, C. A.; Zhang, L.; Morken., J. P. J. Am. Chem. Soc. 2018, 140, 15181.
doi: 10.1021/jacs.8b09909 pmid: 30376317 |
|
[7] |
(a) Chen, J.; Shen, X.; Lu, Z. Angew. Chem., Int. Ed. 2021, 60, 690.
doi: 10.1002/anie.v60.2 pmid: 29906339 |
(b) Bismuto, A.; Thomas, S. P.; Cowley, M. J. Angew. Chem., Int. Ed. 2016, 55, 15356.
doi: 10.1002/anie.v55.49 pmid: 29906339 |
|
(c) Ben-Daat, H.; Rock, C. L.; Flores, M.; Groy, T. L.; Bowman, A. C.; Trovitch, R. J. Chem. Commun. 2017, 53, 7333.
doi: 10.1039/C7CC02281F pmid: 29906339 |
|
(d) Guo, J.; Cheng, B.; Shen, X.; Lu, Z. J. Am. Chem. Soc. 2017, 139, 15316.
doi: 10.1021/jacs.7b09832 pmid: 29906339 |
|
(e) Victoria, A.; Pollard, M.; Angeles, F.; Alan, R.; Kennedy, R. M.; Mulvey, R. E. Angew. Chem. Int. Ed. 2018, 57, 10651.
doi: 10.1002/anie.201806168 pmid: 29906339 |
|
(f) Magre, M.; Maity, B.; Falconnet, A.; Cavallo, L.; Rueping, M. Angew. Chem. Int. Ed. 2019, 58, 1.
pmid: 29906339 |
|
[8] |
Mandal, S.; Kumar Verma, P.; Geetharani, K. Chem. Commun. 2018, 54, 13690.
doi: 10.1039/C8CC08361D |
[9] |
Minami, H.; Saito, T.; Wang, C.; Uchiyama, M. Angew. Chem., Int. Ed. 2015, 54, 4665.
doi: 10.1002/anie.201412249 |
[10] |
Fleige, M.; Mobus, J.; Stein, T.; Glorius, F.; Stephan, D. W. Chem. Commun. 2016, 52, 10830.
doi: 10.1039/C6CC05360B |
[11] |
Iwadate, N.; Suginome, M. J. Am. Chem. Soc. 2010, 132, 2548.
doi: 10.1021/ja1000642 |
[12] |
(a) Agapie, T. Coord. Chem. Rev. 2011, 255, 861.
doi: 10.1016/j.ccr.2010.11.035 |
(b) Li, J.; Knochel, P. Synthesis 2019, 51, 2100.
doi: 10.1055/s-0037-1611756 |
|
(c) Zeng, X. Synlett 2020, 31, 205.
doi: 10.1055/s-0039-1690764 |
|
(d) Cong, X.; Zeng, X. Acc. Chem. Res. 2021, 54, 2014.
doi: 10.1021/acs.accounts.1c00096 |
|
[13] |
(a) Cong, X.; Tang, H.; Zeng, X. J. Am. Chem. Soc. 2015, 137, 14367.
doi: 10.1021/jacs.5b08621 pmid: 31074625 |
(b) Steib, A. K.; Kuzmina, O. M.; Fernandez, S.; Malhotra, S.; Knochel, P. Chem. Eur. J. 2015, 21, 1961.
doi: 10.1002/chem.v21.5 pmid: 31074625 |
|
(c) Yan, J.; Yoshikai, N. Org. Lett. 2017, 19, 6630.
doi: 10.1021/acs.orglett.7b03342 pmid: 31074625 |
|
(d) Han, B.; Ma, P.; Cong, X.; Chen, H.; Zeng, X. J. Am. Chem. Soc. 2019, 141, 9018.
doi: 10.1021/jacs.9b03328 pmid: 31074625 |
|
(e) Yin, J.; Li, J.; Wang, G.-X.; Yin, Z.-B.; Zhang, W.-X.; Xi, Z. J. Am. Chem. Soc. 2019, 141, 4241.
doi: 10.1021/jacs.9b00822 pmid: 31074625 |
|
(f) Tang, J.; Liu, L. L.; Yang, S.; Cong, X.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2020, 142, 7715.
doi: 10.1021/jacs.0c00283 pmid: 31074625 |
|
(g) Chen, M.; Doba, T.; Sato, T.; Razumkov, H.; Ilies, L.; Shang, R.; Nakamura, E. J. Am. Chem. Soc. 2020, 142, 4883.
doi: 10.1021/jacs.0c00127 pmid: 31074625 |
|
(h) Zhao, L.; Hu, C.; Cong, X.; Deng, G.; Liu, L. L.; Luo, M.; Zeng, X. J. Am. Chem. Soc. 2021, 143, 1618.
doi: 10.1021/jacs.0c12318 pmid: 31074625 |
|
(i) Zhang, Y.; Zhu, S. Chin. J. Org. Chem. 2021, 41, 1255.
doi: 10.6023/cjoc202100017 pmid: 31074625 |
|
(j) Ye, Y.; Gong, H. Chin. J. Org. Chem. 2020, 40, 2588.
doi: 10.6023/cjoc202000048 pmid: 31074625 |
|
(k) Zhao, Y.; Ge, S. Angew. Chem. Int. Ed. 2021, 60, 2149.
doi: 10.1002/anie.v60.4 pmid: 31074625 |
|
[14] |
Shima, T.; Yang, J.; Luo, G.; Luo, Y.; Hou, Z. J. Am. Chem. Soc. 2020, 142, 9007..
doi: 10.1021/jacs.0c02939 |
[15] |
Gong, L.; Li, C.; Yuan, F.; Liu, S.; Zeng, X. Org. Lett. 2022, 24, 3227.
doi: 10.1021/acs.orglett.2c01015 |
[16] |
(a) Zhang, Y.-D.; Li, X.-Y.; Mo, Q.-K.; Shi, W.-B.; Zhao, J.-B.; Zhu, S.-F. Angew. Chem. Int. Ed. 2022, 61, e202208473.
doi: 10.1002/anie.202200599 pmid: 35104020 |
(b) Zhou, F.; Shi, W.; Liao, X.; Yang, Y.; Yu, Z.; You, J. ACS Catal. 2022, 12, 676.
doi: 10.1021/acscatal.1c04549 pmid: 35104020 |
|
(c) Brzozowska, A.; Zubar, V.; Ganardi, R.-C; Rueping, M. Org. Lett. 2020, 22, 3765.
doi: 10.1021/acs.orglett.0c00941 pmid: 35104020 |
|
(d) Tai, C.-C; Yu, M.-S; Chen, Y.-L; Chuang, W. H; Lin, T.-H; Yap, G. P. A.; Ong, T.-G. Chem. Commun., 2014, 50, 4344.
doi: 10.1039/C4CC00550C pmid: 35104020 |
|
(e) Salvado, O.; Fernández, E. Chem. Commun., 2021, 57, 6300.
doi: 10.1039/D1CC01882E pmid: 35104020 |
|
(f) Ikenaga, K.; Kikukawa, K.; Matsuda, T. J. Org. Chem. 1987, 52, 1276.
doi: 10.1021/jo00383a019 pmid: 35104020 |
|
(g) Garhwal, S.; Fridman, N.; de Ruiter, G. Inorg. Chem. 2020, 59, 13817.
doi: 10.1021/acs.inorgchem.0c02057 pmid: 35104020 |
[1] | 党燕, 贾朝红, 王亚兰, 王丽, 李亚飞, 李亚红. 含吡咯基配体的锌、锂和镁配合物的合成与表征及其对芳基碘代物的硼化反应和醛、酮的硼氢化反应的催化作用[J]. 有机化学, 2023, 43(3): 1124-1135. |
[2] | 黄云帅, 靳小慧, 张凤莲, 汪义丰. 4-二甲胺基吡啶-硼自由基促进的缺电子烯烃区域选择性硼氢化反应[J]. 有机化学, 2021, 41(5): 1957-1967. |
[3] | 孙越, 关瑞, 刘兆洪, 王也铭. 铁、钴、镍催化烯烃的硼氢化反应研究进展[J]. 有机化学, 2020, 40(4): 899-912. |
[4] | 封智超, 毛国梁, 吴韦, 罗明检, 刘扬. 基于5-氨基邻甲酚的膦配体的合成及在乙烯齐聚中的应用[J]. 有机化学, 2018, 38(3): 698-704. |
[5] | 徐冬冬, 单春晖, 白若鹏, 蓝宇. 碱土金属催化碳二亚胺硼氢化反应机理的理论研究[J]. 有机化学, 2017, 37(5): 1231-1236. |
[6] | 刘睿, 肖树萌, 钟向宏, 曹育才, 梁胜彪, 刘振宇, 叶晓峰, 沈安, 朱红平. 基于[PNP]配体的铬催化剂体系选择性催化乙烯齐聚的研究进展[J]. 有机化学, 2015, 35(9): 1861-1888. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||