有机化学 ›› 2024, Vol. 44 ›› Issue (3): 809-824.DOI: 10.6023/cjoc202312013 上一篇 下一篇
综述与进展
收稿日期:
2023-12-15
修回日期:
2024-02-05
发布日期:
2024-04-02
基金资助:
Fangying Duan, Menglei Yuan(), Jian Zhang()
Received:
2023-12-15
Revised:
2024-02-05
Published:
2024-04-02
Contact:
*E-mail: zhangjian@nwpu.edu.cn; mlyuan@nwpu.edu.cn
Supported by:
文章分享
电催化还原和氧化过程为合成高附加值化学品提供了高效、可持续的平台. 特别是通过配对电解将阴极还原和阳极氧化过程耦合, 可以有效降低反应过电位, 并选择性地合成各种高价值化学品, 近年来引起了越来越多的关注. 总结了成对电解的最新研究进展, 重点介绍了二氧化碳、含氮物质和水等无机小分子还原耦合替代氧化反应的研究. 此外, 还分析了成对电解所面临的主要挑战, 并提出了可能的解决方案, 有望对未来的相关研究提供一定的指导.
段芳颖, 原孟磊, 张健. 无机小分子还原耦合选择性氧化反应的成对电解[J]. 有机化学, 2024, 44(3): 809-824.
Fangying Duan, Menglei Yuan, Jian Zhang. Paired Electrolysis for Inorganic Small Molecules Reduction Coupled with Alternative Oxidation Reactions[J]. Chinese Journal of Organic Chemistry, 2024, 44(3): 809-824.
Cathode reaction | Anode reaction | Electrocatalyst | Electrolyte | Product | FE (%) C/A | Ref. | ||
---|---|---|---|---|---|---|---|---|
Cathode | Anode | Cathode | Anode | |||||
CO2RR | HMFOR | BiOx | NiO NPs | CO2-saturated 0.5 mol/L KHCO3 | HCOOH | FDCA | 81/36 | [48] |
PdOx/ZIF-8 | PdO | [Bmim]BF4 (0.5 mol/L)/CH3CN+H2SO4 (0.5 mol/L)/CH3CN (6.0 mol/L) | CO | Organic acid | 97/84.3 | [49] | ||
Bi-FDCA MOF | Ni(OH)2 | CO2-saturated 0.1 mol/L KHCO3+0.1 mol/L KOH and 5 mmol/L HMF | HCOOH | FDAC | 95.6/75 | [51] | ||
GOR | InBi NP’s | Ni3S2 | 1 mol/L KOH+1 mol/L KOH/0.05 mol/L C3H8O3 | HCOOH | HCOOH | 98/83 | [54] | |
BiOBr | NixB | 1 mol/L KOH+1 mol/L KOH/1 mol/L C3H8O3 | HCOOH | HCOOH | 96/45 | [55] | ||
MOR | SnO2 | CuO | 1 mol/L KHCO3+1 mol/L KOH/1 mol/L CH3OH | HCOOH | HCOOH | 80.5/91.3 | [61] | |
CuSn alloy | CO2-saturated 0.5 mol/L KHCO3+1 mol/L KOH/ 1 mol/L CH3OH | HCOOH | HCOOH | 93.7/96.7 | [66] | |||
Sn-GDE | Pt/PtOx | 1 mol/L KHCO3+0.5 mol/L H2SO4/8 mol/L CH3OH | HCOOH | HCOH | — | [69] | ||
FOR | BiOCl | Cu2O | CO2-saturated 0.5 mol/L KHCO3+1 mol/L KOH/ 0.1 mol/L HCOH | HCOOH | HCOOH | >180 | [52] | |
Cu@Sn NWs | MnO2 | 0.5 mol/L KHCO3+0.1 mol/L Na2SO4/ 5 mmol/L HCOH | CO | HCOOH | 93/— | [68] |
Cathode reaction | Anode reaction | Electrocatalyst | Electrolyte | Product | FE (%) C/A | Ref. | ||
---|---|---|---|---|---|---|---|---|
Cathode | Anode | Cathode | Anode | |||||
CO2RR | HMFOR | BiOx | NiO NPs | CO2-saturated 0.5 mol/L KHCO3 | HCOOH | FDCA | 81/36 | [48] |
PdOx/ZIF-8 | PdO | [Bmim]BF4 (0.5 mol/L)/CH3CN+H2SO4 (0.5 mol/L)/CH3CN (6.0 mol/L) | CO | Organic acid | 97/84.3 | [49] | ||
Bi-FDCA MOF | Ni(OH)2 | CO2-saturated 0.1 mol/L KHCO3+0.1 mol/L KOH and 5 mmol/L HMF | HCOOH | FDAC | 95.6/75 | [51] | ||
GOR | InBi NP’s | Ni3S2 | 1 mol/L KOH+1 mol/L KOH/0.05 mol/L C3H8O3 | HCOOH | HCOOH | 98/83 | [54] | |
BiOBr | NixB | 1 mol/L KOH+1 mol/L KOH/1 mol/L C3H8O3 | HCOOH | HCOOH | 96/45 | [55] | ||
MOR | SnO2 | CuO | 1 mol/L KHCO3+1 mol/L KOH/1 mol/L CH3OH | HCOOH | HCOOH | 80.5/91.3 | [61] | |
CuSn alloy | CO2-saturated 0.5 mol/L KHCO3+1 mol/L KOH/ 1 mol/L CH3OH | HCOOH | HCOOH | 93.7/96.7 | [66] | |||
Sn-GDE | Pt/PtOx | 1 mol/L KHCO3+0.5 mol/L H2SO4/8 mol/L CH3OH | HCOOH | HCOH | — | [69] | ||
FOR | BiOCl | Cu2O | CO2-saturated 0.5 mol/L KHCO3+1 mol/L KOH/ 0.1 mol/L HCOH | HCOOH | HCOOH | >180 | [52] | |
Cu@Sn NWs | MnO2 | 0.5 mol/L KHCO3+0.1 mol/L Na2SO4/ 5 mmol/L HCOH | CO | HCOOH | 93/— | [68] |
Cathode substrate | Electrocatalyst | Innovation point | Ref. | |
---|---|---|---|---|
Cathode | Anode | |||
$\mathrm{NO}_{3}^{-}$ | Ni3Se4 | Design of catalyst (paired with BOR) | [94] | |
Porous foam iron | MMO | Mechanism analysis: intermediate | [99] | |
A polytetrafluoroethylene film was coated with a CuO catalytic layer | A prototype electrified synchronous electrochemical reduction | [101] | ||
Pd Cu/GAC | EPBMR | [102] | ||
Cu9Ni/C | Pt9Ir/C | Symmetric square wave pulse technology, paired with AOR | [103] | |
NOx | — | Graphite felt GDE (electrode) | A two-stage oxidation absorption technique | [109] |
AC (electrode) | DSA (electrode) | MLPE | [112] |
Cathode substrate | Electrocatalyst | Innovation point | Ref. | |
---|---|---|---|---|
Cathode | Anode | |||
$\mathrm{NO}_{3}^{-}$ | Ni3Se4 | Design of catalyst (paired with BOR) | [94] | |
Porous foam iron | MMO | Mechanism analysis: intermediate | [99] | |
A polytetrafluoroethylene film was coated with a CuO catalytic layer | A prototype electrified synchronous electrochemical reduction | [101] | ||
Pd Cu/GAC | EPBMR | [102] | ||
Cu9Ni/C | Pt9Ir/C | Symmetric square wave pulse technology, paired with AOR | [103] | |
NOx | — | Graphite felt GDE (electrode) | A two-stage oxidation absorption technique | [109] |
AC (electrode) | DSA (electrode) | MLPE | [112] |
Cathode reaction | Anode reaction | Electrocatalyst | Voltage @10 mA•cm-2/V | Tafel slope/(mV•dec-1) | Stability | Ref. | |
---|---|---|---|---|---|---|---|
Cathode | Anode | ||||||
HER | HMFOR | Ni-VN | 1.426 | 45/25 | 10 cycle | [116] | |
Rh-O5/Ni (Fe) | 1.32 | 31.5/55 | >100 h | [119] | |||
Co-NixP@C hybrid | 1.4 | 140.6/— | 6 cycle | [120] | |||
Co4N/NC@CC | 1.38 | 69.2/— | 6 cycle | [121] | |||
NF@Mo-Ni0.85Se | 1.5 (@50 mA•cm-2) | 98.98/— | 6 cycle | [122] | |||
NiMo3S4 | NiMo3S4-R | 1.414 | 28.8/36.5 | 6 cycle | [123] | ||
MOR | Co-Ni-P | 1.45 (@100 mA•cm-2) | 67.7/22.2 | 20 h | [124] | ||
NiFe2O4 | 1.55 | —/28.5 | >48 h | [126] | |||
UOR | NiCoP | NiCo MOF | 1.447 | 218/88 | 24 h | [135] | |
Ni-MOF@Ni-NCNT | 1.33 | —/38.8 | >20 h | [136] | |||
Ce-Ni2P | 1.51 | 78.4/53.7 | >12 h | [137] | |||
Mo-NT@NF | 1.57 (@50 mA•cm-2) | 89/— | 90 h | [138] | |||
Fe-Co0.85Se/FeCo LDH | 1.57 (@300 mA•cm-2) | 43.9/40 | >60 h | [141] | |||
CoNi@CN‐CoNiMoO | 1.58 (@500 mA•cm-2) | 61/30 | 120 h | [142] | |||
NiFeSP | 1.938 (@500 mA•cm-2) | 38.2/76.8 | 1000 h | [146] |
Cathode reaction | Anode reaction | Electrocatalyst | Voltage @10 mA•cm-2/V | Tafel slope/(mV•dec-1) | Stability | Ref. | |
---|---|---|---|---|---|---|---|
Cathode | Anode | ||||||
HER | HMFOR | Ni-VN | 1.426 | 45/25 | 10 cycle | [116] | |
Rh-O5/Ni (Fe) | 1.32 | 31.5/55 | >100 h | [119] | |||
Co-NixP@C hybrid | 1.4 | 140.6/— | 6 cycle | [120] | |||
Co4N/NC@CC | 1.38 | 69.2/— | 6 cycle | [121] | |||
NF@Mo-Ni0.85Se | 1.5 (@50 mA•cm-2) | 98.98/— | 6 cycle | [122] | |||
NiMo3S4 | NiMo3S4-R | 1.414 | 28.8/36.5 | 6 cycle | [123] | ||
MOR | Co-Ni-P | 1.45 (@100 mA•cm-2) | 67.7/22.2 | 20 h | [124] | ||
NiFe2O4 | 1.55 | —/28.5 | >48 h | [126] | |||
UOR | NiCoP | NiCo MOF | 1.447 | 218/88 | 24 h | [135] | |
Ni-MOF@Ni-NCNT | 1.33 | —/38.8 | >20 h | [136] | |||
Ce-Ni2P | 1.51 | 78.4/53.7 | >12 h | [137] | |||
Mo-NT@NF | 1.57 (@50 mA•cm-2) | 89/— | 90 h | [138] | |||
Fe-Co0.85Se/FeCo LDH | 1.57 (@300 mA•cm-2) | 43.9/40 | >60 h | [141] | |||
CoNi@CN‐CoNiMoO | 1.58 (@500 mA•cm-2) | 61/30 | 120 h | [142] | |||
NiFeSP | 1.938 (@500 mA•cm-2) | 38.2/76.8 | 1000 h | [146] |
[101] |
Gao J. N.; Shi N.; Li Y. F.; Jiang B.; Marhaba T.; Zhang W. Environ. Sci. Technol. 2022, 56, 11602.
doi: 10.1021/acs.est.1c08442 |
[102] |
Ma J.; Wei W.; Qin G.; Jiang L.; Wong N. H.; Sunarso J.; Liu S. Sep. Purif. Technol. 2022, 292, 121010.
doi: 10.1016/j.seppur.2022.121010 |
[103] |
Hariri M. B.; Botte G. G. J. Electrochem. Soc. 2023, 170, 053502.
doi: 10.1149/1945-7111/accc57 |
[104] |
Damma D.; Ettireddy P.; Reddy B.; Smirniotis P. Catalysts 2019, 9, 349.
doi: 10.3390/catal9040349 |
[105] |
Hu Z. F.; Jiang E. C.; Ma X. Q. Fuel 2019, 245, 160.
doi: 10.1016/j.fuel.2019.02.071 |
[106] |
Lee T.; Bai H. AIMS Environ. Sci. 2016, 3, 261.
doi: 10.3934/environsci.2016.2.261 |
[107] |
Newman B. L.; Carta G. AIChE J. 1988, 34, 1190.
doi: 10.1002/aic.v34:7 |
[108] |
Si M.; Shen B.; Adwek G.; Xiong L.; Liu L.; Yuan P.; Gao H.; Liang C.; Guo Q. J. Environ. Sci. (China) 2021, 101, 49.
doi: 10.1016/j.jes.2020.08.004 |
[109] |
Jin J. J.; Wang L. D.; Yu Z. Y.; Sun W.; Yang Z. Q.; Chen X.; Liu G. C. Sep. Purif. Technol. 2022, 283, 120198.
doi: 10.1016/j.seppur.2021.120198 |
[110] |
Peng J.; Yao W.; Yang Z. J. Environ. Eng. 2020, 146, 04020125.
doi: 10.1061/(ASCE)EE.1943-7870.0001807 |
[111] |
Adewuyi Y. G.; Khan M. A. Chem. Eng. J. 2016, 304, 793.
doi: 10.1016/j.cej.2016.06.071 |
[112] |
Jin J. J.; Wang L. D.; Sun W.; Yang Z. Q.; Chen X.; Wang H. Y.; Liu G. C. Ind. Eng. Chem. Res. 2022, 61, 17254.
doi: 10.1021/acs.iecr.2c02312 |
[113] |
Chu S.; Majumdar A. Nature 2012, 488, 294.
doi: 10.1038/nature11475 |
[114] |
Xiao P.; Chen W.; Wang X. Adv. Energy Mater. 2015, 5, 1500985.
doi: 10.1002/aenm.v5.24 |
[115] |
Park M.; Gu M.; Kim B. S. ACS Nano 2020, 14, 6812.
doi: 10.1021/acsnano.0c00581 |
[116] |
Jia W. Q.; Liu B. Q.; Gong R.; Bian X. X.; Du S. C.; Ma S. Y.; Song Z. C.; Ren Z. Y.; Chen Z. M. Small 2023, 19, 2302025.
doi: 10.1002/smll.v19.39 |
[1] |
Koh J. H.; Won D. H.; Eom T.; Kim N. K.; Jung K. D.; Kim H.; Hwang Y. J.; Min B. K. ACS Catal. 2017, 7, 5071.
doi: 10.1021/acscatal.7b00707 |
[2] |
Duan W.; Li G.; Lei Z.; Zhu T.; Xue Y.; Wei C.; Feng C. Water Res. 2019, 161, 126.
doi: 10.1016/j.watres.2019.05.104 |
[3] |
Huo X. C.; Van Hoomissen D. J.; Liu J. Y.; Vyas S.; Strathmann T. J. Appl. Catal., B 2017, 211, 188.
doi: 10.1016/j.apcatb.2017.04.045 |
[4] |
Bu J.; Liu Z. P.; Ma W. X.; Zhang L.; Wang T.; Zhang H. P.; Zhang Q. Y.; Feng X. L.; Zhang J. Nat. Catal. 2021, 4, 557.
doi: 10.1038/s41929-021-00641-x |
[5] |
Sun G. Q.; Yu P.; Zhang W.; Zhang W.; Wang Y.; Liao L. L.; Zhang Z.; Li L.; Lu Z.; Yu D. G.; Lin S. Nature 2023, 615, 67.
doi: 10.1038/s41586-022-05667-0 |
[6] |
Zhang W.; Liao L. L.; Li L.; Liu Y.; Dai L. F.; Sun G. Q.; Ran C. K.; Ye J. H.; Lan Y.; Yu D. G. Angew. Chem., Int. Ed. 2023, 62, e202301892.
doi: 10.1002/anie.v62.23 |
[7] |
Verma S.; Lu S.; Kenis P. J. A. Nat. Energy 2019, 4, 466.
doi: 10.1038/s41560-019-0374-6 |
[8] |
Zhao X.; Du L. J.; You B.; Sun Y. J. Catal. Sci. Technol. 2020, 10, 2711.
doi: 10.1039/D0CY00453G |
[9] |
Luo L.; Chen W.; Xu S. M.; Yang J.; Li M.; Zhou H.; Xu M.; Shao M.; Kong X.; Li Z.; Duan H. J. Am. Chem. Soc. 2022, 144, 7720.
doi: 10.1021/jacs.2c00465 |
[10] |
Nitopi S.; Bertheussen E.; Scott S. B.; Liu X.; Engstfeld A. K.; Horch S.; Seger B.; Stephens I. E. L.; Chan K.; Hahn C.; Norskov J. K.; Jaramillo T. F.; Chorkendorff I. Chem. Rev. 2019, 119, 7610.
doi: 10.1021/acs.chemrev.8b00705 |
[11] |
Ali T.; Wang H.; Iqbal W.; Bashir T.; Shah R.; Hu Y. Adv. Sci. 2023, 10, 2205077.
doi: 10.1002/advs.v10.1 |
[12] |
Na J.; Seo B.; Kim J.; Lee C. W.; Lee H.; Hwang Y. J.; Min B. K.; Lee D. K.; Oh H. S.; Lee U. Nat. Commun. 2019, 10, 5193.
doi: 10.1038/s41467-019-12744-y |
[13] |
Karlsson R. K.; Cornell A. Chem. Rev. 2016, 116, 2982.
doi: 10.1021/acs.chemrev.5b00389 pmid: 26879761 |
[14] |
Li D.; Yang J.; Lian J.; Yan J.; Liu S. J. Energy Chem. 2023, 77, 406.
doi: 10.1016/j.jechem.2022.10.031 |
[15] |
Zou X.; Zhang Y. Chem. Soc. Rev. 2015, 44, 5148.
doi: 10.1039/C4CS00448E |
[16] |
Yin J.; Li Y.; Lv F.; Fan Q.; Zhao Y. Q.; Zhang Q.; Wang W.; Cheng F.; Xi P.; Guo S. ACS Nano 2017, 11, 2275.
doi: 10.1021/acsnano.7b00417 |
[17] |
You B.; Sun Y. Acc. Chem. Res. 2018, 51, 1571.
doi: 10.1021/acs.accounts.8b00002 |
[117] |
Li S. Q.; Sun X.; Yao Z. H.; Zhong X.; Coo Y. Y.; Liang Y. L.; Wei Z. Z.; Deng S. W.; Zhuang G. L.; Li X. N.; Wang J. G. Adv. Funct. Mater. 2019, 29, 1904780.
doi: 10.1002/adfm.v29.42 |
[118] |
Gong R.; Liu B.; Wang X.; Du S.; Xie Y.; Jia W.; Bian X.; Chen Z.; Ren Z. Small 2023, 19, e2204889.
|
[119] |
Zeng L.; Chen Y.; Sun M.; Huang Q.; Sun K.; Ma J.; Li J.; Tan H.; Li M.; Pan Y.; Liu Y.; Luo M.; Huang B.; Guo S. J. Am. Chem. Soc. 2023, 145, 17577.
doi: 10.1021/jacs.3c02570 |
[120] |
Xing M.; Zhang D.; Liu D.; Song C.; Wang D. J. Colloid Interface Sci. 2022, 629, 451.
doi: 10.1016/j.jcis.2022.09.091 |
[121] |
Zhang D. L.; Xing M. M.; Mou X. M.; Song C. X.; Wang D. B. Appl. Surf. Sci. 2023, 608, 155283.
doi: 10.1016/j.apsusc.2022.155283 |
[122] |
Yang C. M.; Wang C. T.; Zhou L. H.; Duan W.; Song Y. Y.; Zhang F. C.; Zhen Y. Z.; Zhang J. J.; Bao W. W.; Lu Y. X.; Wang D. J.; Fu F. Chem. Eng. J. 2021, 422, 130125.
doi: 10.1016/j.cej.2021.130125 |
[123] |
Wu T.; Xu Z.; Wang X. L.; Luo M. J.; Xia Y.; Zhang X. C.; Li J. T.; Liu J.; Wang J. C.; Wang H. L.; Huang F. Q. Appl. Catal., B 2023, 323, 122126.
doi: 10.1016/j.apcatb.2022.122126 |
[124] |
Yue X.; Liping S.; Lihua H.; Hui Z. ACS Appl. Nano Mater. 2023, 6, 10312.
doi: 10.1021/acsanm.3c01221 |
[125] |
Xia Z. X.; Zhang X. M.; Sun H.; Wang S. L.; Sun G. Q. Nano Energy 2019, 65, 104048.
doi: 10.1016/j.nanoen.2019.104048 |
[126] |
Du X. B.; Tan M. W.; Wei T.; Kobayashi H.; Song J. J.; Peng Z. X.; Zhu H. L.; Jin Z. K.; Li R. H.; Liu W. Chem. Eng. J. 2023, 452, 139404.
doi: 10.1016/j.cej.2022.139404 |
[127] |
Pan Y. P.; Li Y. Y.; Dong C. L.; Huang Y. C.; Wu J. C.; Shi J. Q.; Lu Y. X.; Yang M.; Wang S. Y.; Zou Y. Q. Chem 2023, 9, 963.
|
[128] |
Wang X. H.; Zhang Z. N.; Wang Z.; Ding Y.; Zhai Q. G.; Jiang Y. C.; Li S. N.; Chen Y. Chem. Eng. J. 2023, 465, 142938.
doi: 10.1016/j.cej.2023.142938 |
[129] |
Liu Y.; Huang M. J.; Zhao J. P.; Lu M.; Zhou X. L.; Lin Q. H.; Wang P. C.; Zhu J. J. Electrochem. Soc. 2020, 167, 066520.
doi: 10.1149/1945-7111/ab8647 |
[130] |
Ding Y.; Li Y.; Xue Y.; Miao B.; Li S.; Jiang Y.; Liu X.; Chen Y. Nanoscale 2019, 11, 1058.
doi: 10.1039/c8nr08104b pmid: 30569934 |
[131] |
Gong M.; Wang D. Y.; Chen C. C.; Hwang B. J.; Dai H. J. Nano Res. 2016, 9, 28.
doi: 10.1007/s12274-015-0965-x |
[132] |
Wang Q.; Astruc D. Chem. Rev. 2020, 120, 1438.
doi: 10.1021/acs.chemrev.9b00223 pmid: 31246430 |
[18] |
Huber G. W.; Iborra S.; Corma A. Chem. Rev. 2006, 106, 4044.
doi: 10.1021/cr068360d |
[19] |
Sudarsanam P.; Zhong R.; Van den Bosch S.; Coman S. M.; Parvulescu V. I.; Sels B. F. Chem. Soc. Rev. 2018, 47, 8349.
doi: 10.1039/c8cs00410b pmid: 30226518 |
[20] |
Goodman B. A. J. Bioresour. Bioprod. 2020, 5, 143.
doi: 10.1016/j.jobab.2020.07.001 |
[21] |
Kisszekelyi P.; Hardian R.; Vovusha H.; Chen B.; Zeng X.; Schwingenschlogl U.; Kupai J.; Szekely G. ChemSusChem 2020, 13, 3060.
doi: 10.1002/cssc.202001276 pmid: 32537939 |
[22] |
Zhou B.; Dong C. L.; Huang Y. C.; Zhang N. N.; Wu Y. D.; Lu Y. X.; Yue X.; Xiao Z. H.; Zou Y. Q.; Wang S. Y. J. Energy Chem. 2021, 61, 179.
doi: 10.1016/j.jechem.2021.02.026 |
[23] |
Zhang H.; Clark J. H.; Geng T.; Zhang H.; Cao F. ChemSus- Chem 2021, 14, 456.
|
[24] |
Xu J. J.; Su T.; Zhu Z. G.; Chen N. M.; Hao D. M.; Wang M. R.; Zhao Y. C.; Ren W. Z.; Lü H. Y. Chem. Eng. J. 2020, 396, 125303.
doi: 10.1016/j.cej.2020.125303 |
[25] |
Hayashi E.; Yamaguchi Y.; Kamata K.; Tsunoda N.; Kumagai Y.; Oba F.; Hara M. J. Am. Chem. Soc. 2019, 141, 890.
doi: 10.1021/jacs.8b09917 pmid: 30612429 |
[26] |
Xu H. C.; Li X. Y.; Hu W. X.; Lu L. F.; Chen J. G.; Zhu Y. M.; Zhou H. R.; Zhou H. R.; Si C. L. Fuel Process. Technol. 2022, 234, 107338.
doi: 10.1016/j.fuproc.2022.107338 |
[27] |
Li Y.; Dang Z. Y.; Gao P. Q. Nano Select. 2021, 2, 847.
doi: 10.1002/nano.v2.5 |
[28] |
Kunitski M.; Eicke N.; Huber P.; Kohler J.; Zeller S.; Voigtsberger J.; Schlott N.; Henrichs K.; Sann H.; Trinter F.; Schmidt L. P. H.; Kalinin A.; Schoffler M. S.; Jahnke T.; Lein M.; Dorner R. Nat. Commun. 2019, 10, 1.
doi: 10.1038/s41467-018-07882-8 pmid: 30602773 |
[29] |
Li Y.; Wei X.; Chen L.; Shi J.; He M. Nat. Commun. 2019, 10, 5335.
doi: 10.1038/s41467-019-13375-z |
[30] |
Kong P. S.; Aroua M. K.; Daud W. M. A. W. Renew. Sust. Energ. Rev. 2016, 63, 533.
doi: 10.1016/j.rser.2016.05.054 |
[31] |
Lucas F. W. S.; Grim R. G.; Tacey S. A.; Downes C. A.; Hasse J.; Roman A. M.; Farberow C. A.; Schaidle J. A.; Holewinski A. ACS Energy Lett. 2021, 6, 1205.
|
[32] |
Dai C.; Sun L.; Liao H.; Khezri B.; Webster R. D.; Fisher A. C.; Xu Z. J. J. Catal. 2017, 356, 14.
doi: 10.1016/j.jcat.2017.10.010 |
[33] |
Villa A.; Wang D.; Su D. S.; Prati L. ChemCatChem 2009, 1, 510.
doi: 10.1002/cctc.v1:4 |
[34] |
Yajima T.; Uchida H.; Watanabe M. J. Phys. Chem. B 2004, 108, 2654.
doi: 10.1021/jp037215q |
[35] |
Liu Y. J.; Ren G. H.; Wang M. Q.; Zhang Z. C.; Liang Y.; Wu S. S.; Shen J. J. Alloys Compd. 2019, 780, 504.
doi: 10.1016/j.jallcom.2018.12.016 |
[36] |
Wu J. L.; Xu M. M.; Lei S. S.; Jin C. C. Int. J. Hydrogen Energy 2020, 45, 12815.
doi: 10.1016/j.ijhydene.2020.03.015 |
[37] |
Wang L.; Zhu Y.; Wen Y.; Li S.; Cui C.; Ni F.; Liu Y.; Lin H.; Li Y.; Peng H.; Zhang B. Angew. Chem., Int. Ed. Engl. 2021, 60, 10577.
doi: 10.1002/anie.v60.19 |
[38] |
Abd El Lateef H. M.; Khalaf M. M.; Al Omair M. A.; Dao V. D.; Mohamed I. M. A. Mater. Lett. 2020, 276, 128192.
doi: 10.1016/j.matlet.2020.128192 |
[39] |
Yang W. L.; Yang X. P.; Hou C. M.; Li B. J.; Gao H. T.; Lin J. H.; Luo X. L. Appl. Catal., B 2019, 259, 118020.
doi: 10.1016/j.apcatb.2019.118020 |
[40] |
Geng S. K.; Zheng Y.; Li S. Q.; Su H.; Zhao X.; Hu J.; Shu H. B.; Jaroniec M.; Chen P.; Liu Q. H.; Qiao S. Z. Nat. Energy 2021, 6, 904.
doi: 10.1038/s41560-021-00899-2 |
[41] |
Hepburn C.; Adlen E.; Beddington J.; Carter E. A.; Fuss S.; Mac Dowell N.; Minx J. C.; Smith P.; Williams C. K. Nature 2019, 575, 87.
doi: 10.1038/s41586-019-1681-6 |
[42] |
Gao S. S.; Wang T. W.; Jin M. M.; Zhang S. S.; Liu Q.; Hu G. Z.; Yang H.; Luo J.; Liu X. J. Sci. China Mater. 2022, 66, 1013.
doi: 10.1007/s40843-022-2236-8 |
[43] |
Jiang Y.; Wang Y.; Chen R.; Li Y.; Li C. Energy Fuels 2023, 37, 17951.
doi: 10.1021/acs.energyfuels.3c01657 |
[44] |
Nwosu U.; Siahrostami S. Catal. Sci. Technol. 2023, 13, 3740.
doi: 10.1039/D3CY00408B |
[45] |
Kuang Y.; Rabiee H.; Ge L.; Rufford T. E.; Yuan Z.; Bell J.; Wang H. Energy Environ. Mater. 2023, 0, e12596.
|
[46] |
Zhu Y.; Romain C.; Williams C. K. Nature 2016, 540, 354.
doi: 10.1038/nature21001 |
[47] |
Weingarten R.; Rodriguez-Beuerman A.; Cao F.; Luterbacher J. S.; Alonso D. M.; Dumesic J. A.; Huber G. W. ChemCatChem 2014, 6, 2229.
doi: 10.1002/cctc.v6.8 |
[48] |
Choi S.; Balamurugan M.; Lee K.-G.; Cho K. H.; Park S.; Seo H.; Nam K. T. J. Phys. Chem. Lett. 2020, 11, 2941.
doi: 10.1021/acs.jpclett.0c00425 |
[49] |
Bi J.; Zhu Q.; Guo W.; Li P.; Jia S.; Liu J.; Ma J.; Zhang J.; Liu Z.; Han B. ACS Sustainable Chem. Eng. 2022, 10, 8043.
doi: 10.1021/acssuschemeng.2c02117 |
[50] |
Heidary N.; Kornienko N. Chem. Sci. 2020, 11, 1798.
doi: 10.1039/d0sc00136h pmid: 32180924 |
[51] |
Yang Z. W.; Chen J. M.; Liang Z. L.; Xie W. J.; Zhao B.; He L. N. ChemCatChem 2022, 15, e202201321.
doi: 10.1002/cctc.v15.2 |
[133] |
Wu H.; Wang J.; Jin W.; Wu Z. Nanoscale 2020, 12, 18497.
doi: 10.1039/D0NR04458J |
[134] |
Li X.; Fan M. L.; Wei D. D.; Li M. G.; Wang Y. L. Electrochim. Acta 2020, 354, 136682.
doi: 10.1016/j.electacta.2020.136682 |
[135] |
Wei D. D.; Tang W. J.; Ma N. N.; Wang Y. L. J. Alloys Compd. 2021, 874, 159945.
doi: 10.1016/j.jallcom.2021.159945 |
[136] |
Xie Y.; Xiong T.; Li C.; Shi H.; Zhou C.; Luo F.; Yang Z. J. Colloid Interface Sci. 2023, 652, 41.
doi: 10.1016/j.jcis.2023.08.063 |
[137] |
Xiong K.; Yu L. J.; Xiang Y.; Zhang H. D.; Chen J.; Gao Y. J. Alloys Compd. 2022, 912, 165234.
doi: 10.1016/j.jallcom.2022.165234 |
[138] |
Liu M.; Zou W.; Cong J.; Su N.; Qiu S.; Hou L. Small 2023, 19, e2302698.
|
[139] |
Jiang H.; Sun M. Z.; Wu S. L.; Huang B. L.; Lee C. S.; Zhang W. J. Adv. Funct. Mater. 2021, 31, 2104951.
doi: 10.1002/adfm.v31.43 |
[140] |
Deng L.; Hu F.; Ma M.; Huang S. C.; Xiong Y.; Chen H. Y.; Li L.; Peng S. Angew. Chem., Int. Ed. 2021, 60, 22276.
doi: 10.1002/anie.v60.41 |
[141] |
Yu H. Z.; Zhu S. Q.; Hao Y. X.; Chang Y. M.; Li L. L.; Ma J.; Chen H. Y.; Shao M. H.; Peng S. J. Adv. Funct. Mater. 2023, 33, 2212811.
doi: 10.1002/adfm.v33.12 |
[142] |
Qian G. F.; Chen J. L.; Jiang W. J.; Yu T. Q.; Tan K. X.; Yin S. B. Carbon Energy 2023, 2, e368.
|
[143] |
Dresp S.; Dionigi F.; Klingenhof M.; Strasser P. ACS Energy Lett. 2019, 4, 933.
doi: 10.1021/acsenergylett.9b00220 |
[144] |
Wei T.; Meng G.; Zhou Y.; Wang Z.; Liu Q.; Luo J.; Liu X. Chem. Commun. (Camb.) 2023, 59, 9992.
doi: 10.1039/D3CC02419A |
[145] |
Tong W.; Forster M.; Dionigi F.; Dresp S.; Sadeghi Erami R.; Strasser P.; Cowan A. J.; Farràs P. Nat. Energy 2020, 5, 367.
doi: 10.1038/s41560-020-0550-8 |
[146] |
Yu Z. P.; Li Y. F.; Martin-Diaconescu V.; Simonelli L.; Ruiz Esquius J.; Amorim I.; Araujo A.; Meng L. J.; Faria J. L.; Liu L. F. Adv. Funct. Mater. 2022, 32, 2206138.
doi: 10.1002/adfm.v32.38 |
[52] |
Li M.; Wang T.; Zhao W.; Wang S.; Zou Y. Nano-Micro Lett. 2022, 14, 211.
|
[53] |
Simoes M.; Baranton S.; Coutanceau C. ChemSusChem 2012, 5, 2106.
doi: 10.1002/cssc.v5.11 |
[54] |
van den Bosch B.; Rawls B.; Brands M. B.; Koopman C.; Phillips M. F.; Figueiredo M. C.; Gruter G.-J. M. ChemPlusChem 2023, 88, e202300112.
doi: 10.1002/cplu.v88.4 |
[55] |
Junqueira J. R. C.; Das D.; Brix A. C.; Dieckhoefer S.; Weidner J.; Wang X.; Shi J.; Schuhmann W. ChemSusChem 2023, 16, 16.
|
[56] |
Pei Y. H.; Pi Z. F.; Zhong H.; Cheng J.; Jin F. M. J. Mater. Chem. A 2022, 10, 1309.
doi: 10.1039/D1TA07119J |
[57] |
Wang G. X.; Chen J. X.; Li K. K.; Huang J. H.; Huang Y. C.; Liu Y. J.; Hu X.; Zhao B. S.; Yi L. C.; Jones T. W.; Wen Z. H. Nano Energy 2022, 92, 106751.
doi: 10.1016/j.nanoen.2021.106751 |
[58] |
van den Bosch B.; Krasovic J.; Rawls B.; Jongerius A. L. Curr. Opin. Green Sustainable Chem. 2022, 34, 100592.
|
[59] |
Chang S. C.; Ho Y.; Weaver M. J. J. Am. Chem. Soc. 1991, 113, 9506.
doi: 10.1021/ja00025a014 |
[60] |
Olah G. A. Angew. Chem., Int. Ed. 2005, 44, 2636.
doi: 10.1002/anie.v44:18 |
[61] |
Wei X.; Li Y.; Chen L.; Shi J. Angew. Chem., Int. Ed. 2021, 60, 3148.
doi: 10.1002/anie.v60.6 |
[62] |
Xiao C. Q.; Cheng L.; Wang Y. T.; Liu J. Z.; Chen R. Z.; Jiang H.; Li Y. H.; Li C. Z. J. Mater. Chem. A 2022, 10, 1329.
doi: 10.1039/D1TA08303A |
[63] |
Cao C.; Ma D. D.; Jia J.; Xu Q.; Wu X. T.; Zhu Q. L. Adv. Mater. 2021, 33, e2008631.
|
[64] |
Li Z. Q.; Gao Y. G.; Meng X.; Sun B.; Song K. P.; Wang Z. Y.; Liu Y. Y.; Zheng Z. K.; Wang P.; Dai Y.; Cheng H. F.; Huang B. B. Cell Rep. Phys. Sci. 2022, 3, 100972.
|
[65] |
Zhou L. L.; Qu Z. P.; Fu L. J. Environ. Chem. Eng. 2023, 11, 109427.
doi: 10.1016/j.jece.2023.109427 |
[66] |
Li Y.; Huo C. Z.; Wang H. J.; Ye Z. X.; Luo P. P.; Cao X. X.; Lu T. B. Nano Energy 2022, 98, 107277.
doi: 10.1016/j.nanoen.2022.107277 |
[67] |
Ran C. K.; Xiao H. Z.; Liao L. L.; Ju T.; Zhang W.; Yu D. G. Natl. Sci. Open 2022, 2, 20220024.
doi: 10.1360/nso/20220024 |
[68] |
Lv X. D.; Liu J. Y.; Shao T.; Ye M.; Liu S. W. Catal. Today 2023, 420, 114188.
doi: 10.1016/j.cattod.2023.114188 |
[69] |
Baessler J.; Oliveira T.; Keller R.; Wessling M. ACS Sustainable Chem. Eng. 2023, 11, 6822.
doi: 10.1021/acssuschemeng.2c07523 |
[70] |
Panagopoulos Y.; Konstantinidou A.; Lazogiannis K.; Papado- poulos A.; Dimitriou E. Hydrology 2021, 8, 33.
doi: 10.3390/hydrology8010033 |
[71] |
Koolen C. D.; Rothenberg G. ChemSusChem 2019, 12, 164.
doi: 10.1002/cssc.v12.1 |
[72] |
Xie D. h.; Li C. C.; Tang R.; Lv Z. S.; Ren Y.; Wei C. H.; Feng C. H. Electrochem. Commun. 2014, 46, 99.
doi: 10.1016/j.elecom.2014.06.020 |
[73] |
Yu C.; Huang X.; Chen H.; Godfray H. C. J.; Wright J. S.; Hall J. W.; Gong P.; Ni S.; Qiao S.; Huang G.; Xiao Y.; Zhang J.; Feng Z.; Ju X.; Ciais P.; Stenseth N. C.; Hessen D. O.; Sun Z.; Yu L.; Cai W.; Fu H.; Huang X.; Zhang C.; Liu H.; Taylor J. Nature 2019, 567, 516.
doi: 10.1038/s41586-019-1001-1 |
[74] |
Tugaoen H. O.; Garcia-Segura S.; Hristovski K.; Westerhoff P. Sci. Total Environ. 2017, 599-600, 1524.
doi: 10.1016/j.scitotenv.2017.04.238 |
[75] |
Chauhan R.; Srivastava V. C. Chem. Eng. J. 2020, 386, 122065.
doi: 10.1016/j.cej.2019.122065 |
[76] |
Zhang X.; Wang Y. T.; Liu C. B.; Yu Y. F.; Lu S. Y.; Zhang B. Chem. Eng. J. 2021, 403, 126269.
doi: 10.1016/j.cej.2020.126269 |
[77] |
Song Q.; Li M.; Wang L.; Ma X.; Liu F.; Liu X. J. Hazard. Mater. 2019, 363, 119.
doi: 10.1016/j.jhazmat.2018.09.046 |
[78] |
Zhu H. S.; Mao Y. P.; Chen Y.; Long X. L.; Yuan W. K. Korean J. Chem. Eng. 2013, 30, 1241.
doi: 10.1007/s11814-013-0053-4 |
[79] |
Wang H.; Wang W.; Liang S.; Zhang C.; Qu S.; Liang Y.; Li Y.; Xu M.; Yang Z. Environ. Sci. Technol. 2019, 53, 1432.
doi: 10.1021/acs.est.8b06516 |
[80] |
Zhang P.; Yuan C.; Sun Q.; Liu A.; You S.; Li X.; Zhang Y.; Jiao X.; Sun D.; Sun M.; Liu M.; Lun F. Environ. Sci. Technol. 2019, 53, 11031.
doi: 10.1021/acs.est.9b02643 |
[81] |
Adeleye A. S.; Conway J. R.; Garner K.; Huang Y.; Su Y.; Keller A. A. Chem. Eng. J. 2016, 286, 640.
doi: 10.1016/j.cej.2015.10.105 |
[82] |
Richards L. A.; Vuachère M.; Schäfer A. I. Desalination 2010, 261, 331.
doi: 10.1016/j.desal.2010.06.025 |
[83] |
Tong S.; Zhang B.; Feng C.; Zhao Y.; Chen N.; Hao C.; Pu J.; Zhao L. Bioresour. Technol. 2013, 148, 121.
doi: 10.1016/j.biortech.2013.08.146 |
[84] |
Pizarro A. H.; Molina C. B.; Rodriguez J. J.; Epron F. J. Environ. Chem. Eng. 2015, 3, 2777.
doi: 10.1016/j.jece.2015.09.026 |
[85] |
Paidar M.; Roušar I.; Bouzek K. J. Appl. Electrochem. 1999, 29, 611.
doi: 10.1023/A:1026423218899 |
[86] |
Xu Y.; Ren K. L.; Ren T. L.; Wang M. Z.; Wang Z. Q.; Li X. N.; Wang L.; Wang H. J. Appl. Catal., B 2022, 306, 121094.
doi: 10.1016/j.apcatb.2022.121094 |
[87] |
Du H.; Guo H.; Wang K.; Du X.; Beshiwork B. A.; Sun S.; Luo Y.; Liu Q.; Li T.; Sun X. Angew. Chem., Int. Ed. 2023, 62, e202215782.
doi: 10.1002/anie.v62.5 |
[88] |
Yin S. F.; Xu B. Q.; Zhou X. P.; Au C. T. Appl. Catal., A 2004, 277, 1.
doi: 10.1016/j.apcata.2004.09.020 |
[89] |
Iwamoto M.; Akiyama M.; Aihara K.; Deguchi T. ACS Catal. 2017, 7, 6924.
doi: 10.1021/acscatal.7b01624 |
[90] |
Wang L.; Xia M.; Wang H.; Huang K.; Qian C.; Maravelias C. T.; Ozin G. A. Joule 2018, 2, 1055.
doi: 10.1016/j.joule.2018.04.017 |
[91] |
Zhang R.; Guo Y.; Zhang S. C.; Chen D.; Zhao Y. W.; Huang Z. D.; Ma L. T.; Li P.; Yang Q.; Liang G. J.; Zhi C. Y. Adv. Energy Mater. 2022, 12, 210387.
|
[92] |
Jiao F.; Xu B. Adv. Mater. 2019, 31, e1805173.
|
[93] |
Martin A.; Kalevaru V. N. ChemCatChem 2010, 2, 1504.
doi: 10.1002/cctc.v2.12 |
[94] |
Yue F.; Wang C. T.; Duan W.; Pang H. J.; Wei T. T.; Xue K. X.; Wang D. J.; Fu F.; Yang C. M. Sci. China: Chem. 2023, 66, 2109.
doi: 10.1007/s11430-022-1125-6 |
[95] |
Reyter D.; Belanger D.; Roue L. J. Hazard. Mater. 2011, 192, 507.
doi: 10.1016/j.jhazmat.2011.05.054 pmid: 21703761 |
[96] |
Richards D.; Young S. D.; Goldsmith B. R.; Singh N. Catal. Sci. Technol. 2021, 11, 7331.
doi: 10.1039/D1CY01369F |
[97] |
Yao J. C.; Pan B. J.; Shen R. X.; Yuan T. B.; Wang J. D. Sci. Total Environ. 2019, 687, 198.
doi: 10.1016/j.scitotenv.2019.06.106 |
[98] |
Li W.; Xiao C. W.; Zhao Y.; Zhao Q. Q.; Fan R.; Xue J. J. Catal. Lett. 2016, 146, 2585.
doi: 10.1007/s10562-016-1894-3 |
[99] |
Mao R.; Zhu H. Y.; Wang K. F.; Zhao X. Appl. Catal., B 2021, 298, 120552.
doi: 10.1016/j.apcatb.2021.120552 |
[100] |
Chauhan R.; Srivastava V. C. Process Saf. Environ. Prot. 2021, 147, 245.
doi: 10.1016/j.psep.2020.09.026 |
[1] | 朱有财, 丁欣欣, 孙莉, 刘振. CO2/C2H4耦合制备丙烯酸及其衍生物的研究进展[J]. 有机化学, 2022, 42(4): 965-977. |
[2] | 周子杰, 孔祥梅, 刘天飞. 质子耦合电子转移在有机合成中的应用[J]. 有机化学, 2021, 41(10): 3844-3879. |
[3] | 蔡汉成,方云,夏咏梅,蔡琨. 一种新的催化方法:微波辐射-酶耦合成催化有机合成[J]. 有机化学, 2003, 23(3): 298-304. |
[4] | 刘流,张海涛,王云普. 水溶性高分子担载二茂铁希夫碱的合成[J]. 有机化学, 2002, 22(4): 286-288. |
[5] | 汪志勇,李前荣,姜超,周存六,郭庆祥. 吡啶乙炔苯甲腈类化合物的制备[J]. 有机化学, 2001, 21(7): 514-517. |
[6] | 孙致远,张成祥,RAMACHANDRA S. HOSMA. 5-二氰亚甲基-4-二环丙亚甲基-3-[1-(2, 5-二甲基-3-呋喃基)亚乙基]四氢呋喃-2-酮的合成[J]. 有机化学, 1999, 19(3): 278-281. |
[7] | 孙致远,张成祥,Ramachandra S. Hosmane. 5-二氰亚甲基-4-二环丙亚甲基-3-[1-(2, 5-二甲基-3-呋喃基) 亚乙基]四氢呋 喃-2-酮的合成[J]. 有机化学, 1999, 19(3): 278-281. |
[8] | 王江洪,沈玉全,余从煊. 二种含嘧啶、偶氮苯基取代二炔非线性光学材料的合成[J]. 有机化学, 1999, 19(3): 282-287. |
[9] | 刘云山,贝浼智. SmI~2 引发异腈酸酯和异硫腈酸酯的反应[J]. 有机化学, 1994, 14(1): 34-38. |
[10] | 吴养洁,霍守权,喻正炎. 异环二取代二茂铁衍生物的合成[J]. 有机化学, 1994, 14(1): 38-43. |
[11] | 余正坤,王世华. 钯催化下有机锡化合物的偶联反应在碳-碳键形成过程中的应用[J]. 有机化学, 1993, 13(6): 579-589. |
[12] | 孟岳,冯留贵,王树梅,滕有为. 仓库害虫集合信息素的合成锈赤扁谷盗和长角扁谷盗[J]. 有机化学, 1993, 13(1): 79-83. |
[13] | 宋克敏,李纪太. 钯络合物在有机合成中的一些应用[J]. 有机化学, 1990, 10(5): 411-421. |
[14] | 宋礼成,卡迪亚塔,王积涛. 双簇核铁硫配合物[(μ-RS)Fe2(CO)6]2(μ-S-S-μ)的合成[J]. 有机化学, 1990, 10(3): 270-273. |
[15] | 张汉承,戚杨健,郭奇珍. 用卤代乙酸酯与酰卤的格氏偶合反应合成新戊酰乙酸乙酯[J]. 有机化学, 1989, 9(3): 236-238. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||