有机化学 ›› 2024, Vol. 44 ›› Issue (11): 3375-3385.DOI: 10.6023/cjoc202405001 上一篇 下一篇
研究论文
王斌a,b,*(), 韩万仓b, 张永红b, 夏昱b, 金伟伟b, 陈子仁b, 武少峰b, 刘晨江b,*()
收稿日期:
2024-05-04
修回日期:
2024-06-07
发布日期:
2024-07-10
基金资助:
Bin Wanga,b,*(), Wancang Hanb, Yonghong Zhangb, Yu Xiab, Weiwei Jinb, Ziren Chenb, Shaofeng Wub, Chenjiang Liub,*()
Received:
2024-05-04
Revised:
2024-06-07
Published:
2024-07-10
Contact:
*E-mail:Supported by:
文章分享
1,4-萘醌作为核心骨架存在于许多生物活性分子中, 在医药、生物、化妆品和其他合成材料中有着非常广泛的应用. 以1,4-萘醌、胺和芳基三氮烯为原料, 发展了一种光化学合成胺基芳基双功能化1,4-萘醌化合物的方法. 该方法简单易操作, 无需任何金属、额外的氧化剂及其他添加剂, 只需利用紫光照射溶解在甲醇溶剂中的起始原料, 就可以高效地合成胺基芳基化的1,4-萘醌衍生物, 克级规模反应的顺利进行进一步证明了该方法的实用性.
王斌, 韩万仓, 张永红, 夏昱, 金伟伟, 陈子仁, 武少峰, 刘晨江. 光促进1,4-萘醌的一锅三组分胺基芳基化反应研究[J]. 有机化学, 2024, 44(11): 3375-3385.
Bin Wang, Wancang Han, Yonghong Zhang, Yu Xia, Weiwei Jin, Ziren Chen, Shaofeng Wu, Chenjiang Liu. Study on the Light Promoted One-Pot Three Component Aminoarylation Reaction of 1,4-Naphthoquinone[J]. Chinese Journal of Organic Chemistry, 2024, 44(11): 3375-3385.
Entry | 2a | 3a | Light source | Solvent | Yield/% |
---|---|---|---|---|---|
1 | 0.35 | 0.2 | Purple LED | MeOH | 35 |
2 | 0.35 | 0.2 | Purple LED | EtOH | Trace |
3 | 0.35 | 0.2 | Purple LED | DMSO | 0 |
4 | 0.35 | 0.2 | Purple LED | DCE | 0 |
5 | 0.35 | 0.2 | Purple LED | THF | Trace |
6 | 0.4 | 0.2 | Purple LED | MeOH | 33 |
7 | 0.5 | 0.2 | Purple LED | MeOH | 38 |
8 | 0.6 | 0.2 | Purple LED | MeOH | 41 |
9 | 0.6 | 0.25 | Purple LED | MeOH | 58 |
10 | 0.6 | 0.35 | Purple LED | MeOH | 64 |
11 | 0.6 | 0.4 | Purple LED | MeOH | 73 |
12 | 0.6 | 0.5 | Purple LED | MeOH | 66 |
13 | 0.6 | 0.4 | Blue LED | MeOH | 18 |
14 | 0.6 | 0.4 | White LED | MeOH | Trace |
15 | 0.6 | 0.4 | Purple LED | MeOH | 63b, 74c, 73d |
16 | 0.6 | 0.4 | — | MeOH | 0 |
Entry | 2a | 3a | Light source | Solvent | Yield/% |
---|---|---|---|---|---|
1 | 0.35 | 0.2 | Purple LED | MeOH | 35 |
2 | 0.35 | 0.2 | Purple LED | EtOH | Trace |
3 | 0.35 | 0.2 | Purple LED | DMSO | 0 |
4 | 0.35 | 0.2 | Purple LED | DCE | 0 |
5 | 0.35 | 0.2 | Purple LED | THF | Trace |
6 | 0.4 | 0.2 | Purple LED | MeOH | 33 |
7 | 0.5 | 0.2 | Purple LED | MeOH | 38 |
8 | 0.6 | 0.2 | Purple LED | MeOH | 41 |
9 | 0.6 | 0.25 | Purple LED | MeOH | 58 |
10 | 0.6 | 0.35 | Purple LED | MeOH | 64 |
11 | 0.6 | 0.4 | Purple LED | MeOH | 73 |
12 | 0.6 | 0.5 | Purple LED | MeOH | 66 |
13 | 0.6 | 0.4 | Blue LED | MeOH | 18 |
14 | 0.6 | 0.4 | White LED | MeOH | Trace |
15 | 0.6 | 0.4 | Purple LED | MeOH | 63b, 74c, 73d |
16 | 0.6 | 0.4 | — | MeOH | 0 |
[1] |
(a) Sunassee S. N.; Davies-Coleman M. T. Nat. Prod. Rep. 2012, 29, 513.
|
(b) Josey B. J.; Inks E. S.; Wen X.; Chou C. J. J. Med. Chem. 2013, 56, 1007.
|
|
(c) Xu K.; Wang P.; Wang L.; Liu C.; Xu S.; Cheng Y.; Wang Y.; Li Q.; Lei H. Chem. Biodiversity 2014, 11, 341.
|
|
[2] |
(a) Ayla S. S.; Bahar H.; Yavuz S.; Hazer B.; Ibis C. Phosphorus, Sulfur Silicon Relat. Elem. 2016, 191, 438.
|
(b) Ravichandiran P.; Boguszewska-Czubara A.; Masłyk M.; Bella A. P.; Subramaniyan S. A.; Johnson P. M.; Shim K. S.; Kim H. G.; Yoo D. J. ACS Sustainable Chem. Eng. 2019, 7, 17210.
|
|
[3] |
(a) Aguilar-Martínez M.; Cuevas G.; Jiménez-Estrada M.; González I.; Lotina-Hennsen B; Macías-Ruvalcaba N. J. Org. Chem. 1999, 64, 3684.
pmid: 11674498 |
(b) Neves A. P.; Barbosa C. C.; Greco S. J.; Vargas M. D.; Visentin L. C.; Pinheiro C. B.; Mangrich A. S.; Barbosa J. P.; da Costa G. L. J. Braz. Chem. Soc. 2009, 20, 712.
pmid: 11674498 |
|
(c) Francisco A. I.; Casellato A.; Neves A. P.; Carneiro J. W. D. M.; Vargas M. D.; Visentin L. D. C.; Magalhães A.; Câmara C. A.; Pessoa C.; Costa-Lotufo L. V.; Marinho-Filho J. D. B.; De Moraes M. O. J. Braz. Chem. Soc. 2010, 21, 169.
pmid: 11674498 |
|
[4] |
(a) Fukuyama T.; Yang L. J. Am. Chem. Soc. 1989, 111, 8303.
pmid: 23527658 |
(b) Andrus M. B.; Meredith E. L.; Simmons B. L.; Sekhar B. B. V. S.; Hicken E. J. Org. Lett. 2002, 4, 3549.
pmid: 23527658 |
|
(c) Hoyt M. T.; Palchaudhuri R.; Hergenrother P. J. Invest. New Drugs 2011, 29, 562.
pmid: 23527658 |
|
(d) Rasapalli S.; Jarugumilli G.; Yarrapothu G. R.; Golen J. A.; Rheingold A. L. Org. Lett. 2013, 15, 1736.
doi: 10.1021/ol400528g pmid: 23527658 |
|
(e) Li S.; Wang H.; Li Y.; Deng J.; Lu C.; Shen Y.; Shen Y. ChemBioChem 2014, 15, 94.
pmid: 23527658 |
|
(f) Nawrat C. C.; Kitson R. R. A.; Moody C. J. Org. Lett. 2014, 16, 1896.
pmid: 23527658 |
|
[5] |
(a) Huang H.-M.; Li Y.-J.; Dai Y.-P.; Yu W.-B.; Ye Q.; Gao J.-R. J. Chem. Res. 2013, 37, 34.
|
(b) Li X.; Himes R. A.; Prosser L. C.; Christie C. F.; Watt E.; Edwards S. F.; Metcalf C. S.; West P. J.; Wilcox K. S.; Chan S. S. L.; Chou C. J. J. Med. Chem. 2020, 63, 5865.
|
|
[6] |
(a) Mathew N.; Karunan T.; Srinivasan L.; Muthuswamy K. Drug Dev. Res. 2009, 71, 188.
|
(b) Jali B. R.; Masud K.; Baruah J. B. Polyhedron 2013, 51, 75.
|
|
(c) You H.; Vegi S. R.; Lagishetti C.; Chen S.; Reddy R. S.; Yang X.; Guo J.; Wang C.; He Y. J. Org. Chem. 2018, 83, 4119.
|
|
(d) Batabyal M.; Kumar S. J. Org. Chem. 2023, 88, 7401.
|
|
[7] |
(a) Francisco A. I.; Vargas M. D.; Carneiro J. W. Lanznaster M.; Torres J. C.; Camara C. A.; Pinto A. C. J. Mol. Struct. 2008, 891, 228.
pmid: 27783973 |
(b) Lisboa C. da. S.; Santos V. G.; Vaz B. G.; de Lucas N. C.; Eberlin M. N.; Garden S. J. J. Org. Chem. 2011, 76, 5264.
pmid: 27783973 |
|
(c) Janeczko M.; Demchuk O. M.; Strzelecka D.; Kubinśki K.; Masłyk M. Eur. J. Med. Chem. 2016, 124, 1019.
doi: S0223-5234(16)30896-0 pmid: 27783973 |
|
(d) Zeng F.-L.; Chen X.-L.; He S.-Q.; Sun K.; Liu Y.; Fu R.; Qu L.-B.; Zhao Y.-F.; Yu B. Org. Chem. Front. 2019, 6, 1476.
pmid: 27783973 |
|
[8] |
(a) Yin J.; Liebeskind L. S. J. Org. Chem. 1998, 63, 5726.
|
(b) Narayan S.; Roush W. R. Org. Lett. 2004, 6, 3789.
|
|
(c) Lumb J.-P.; Trauner D. Org. Lett. 2005, 7, 5865.
|
|
(d) Kuttruff C. A.; Geiger S.; Cakmak M.; Mayer P.; Trauner D. Org. Lett. 2012, 14, 1070.
|
|
(e) Wang W.; Xue J.; Tian T.; Zhang J.; Wei L.; Shao J.; Xie Z.; Li Y. Org. Lett. 2013, 15, 2402.
|
|
(f) Maruo S.; Nishio K.; Sasamori T.; Tokitoh N.; Kuramochi K.; Tsubaki K. Org. Lett. 2013, 15, 1556.
|
|
[9] |
(a) Corson B. B.; Heintzelman W. J.; Moe H.; Rousseau C. R. J. Org. Chem. 1962, 27, 1636.
pmid: 1003413 |
(b) Lin A. J.; Sartorelli A. C. J. Med. Chem. 1976, 19, 1336.
pmid: 1003413 |
|
(c) Pluim H.; Wynberg H. J. Org. Chem. 1980, 45, 2498.
pmid: 1003413 |
|
(d) Liebeskind L. S.; Baysdon S. L.; South M. S. J. Am. Chem. Soc. 1980, 102, 7397.
pmid: 1003413 |
|
(e) Janowski W. K.; Prager R. H. Aust. J. Chem. 1985, 38, 921.
pmid: 1003413 |
|
(f) Coppa F.; Fontana F.; Minisci F.; Barbosa M. C. N; Vismara E. Tetrahedron 1991, 47, 7343.
pmid: 1003413 |
|
(g) Hutchinson E. J.; Kerr W. J.; Magennis E. J. Chem. Commun. 2002, 2262.
pmid: 1003413 |
|
[10] |
(a) Fieser L. F. J. Am. Chem. Soc. 1948, 70, 3165.
pmid: 11671788 |
(b) Itahara T. J. Org. Chem. 1985, 50, 5546.
pmid: 11671788 |
|
(c) Tamayo N.; Echavarren A. M.; Carmen Pardes M. J. Org. Chem. 1991, 56, 6488.
pmid: 11671788 |
|
(d) Singh P. K.; Rohtagi B. K.; Khanna R. N. Synth. Commun. 1992, 22, 987.
pmid: 11671788 |
|
(e) Papoutsis I.; Spyroudis S.; Varvoglis A. Tetrahedron Lett. 1996, 37, 913.
pmid: 11671788 |
|
(f) Echavarren A. M.; de Frutos O.; Tamayo N.; Noheda P.; Calle P. J. Org. Chem. 1997, 62, 4524.
pmid: 11671788 |
|
(g) Papoutsis I.; Spyroudis S.; Varvoglis A.; Raptopoulou C. A. Tetrahedron 1997, 53, 6097.
pmid: 11671788 |
|
[11] |
(a) Kazantzi G.; Malamidou-Xenikaki E.; Spyroudis S. Synlett 2006, 16, 2597.
pmid: 21341741 |
(b) Glinis E.; Malamidou-Xenikaki E.; Skouros H.; Spyroudis S.; Tsanakopoulou M. Tetrahedron 2010, 66, 5786.
pmid: 21341741 |
|
(c) Seiple I. B.; Su S.; Rodriguez R. A.; Gianatassio R.; Fujiwara Y.; Sobel A. L.; Baran P. S. J. Am. Chem. Soc. 2010, 132, 13194.
doi: 10.1021/ja1066459 pmid: 21341741 |
|
(d) Lockner J. W.; Dixon D. D.; Risgaard R.; Baran P. S. Org. Lett. 2011, 13, 5628.
pmid: 21341741 |
|
(e) Fujiwara Y.; Domingo V.; Seiple I. B.; Gianatassio R.; Bel M. D.; Baran P. S. J. Am. Chem. Soc. 2011, 133, 3292.
doi: 10.1021/ja111152z pmid: 21341741 |
|
(f) Uchiyama N.; Shirakawa E.; Nishikawa R.; Hayashi T. Chem. Commun. 2011, 47, 11671.
pmid: 21341741 |
|
(g) Wang J.; Wang S.; Wang G.; Zhang J.; Yu X.-Y. Chem. Commun. 2012, 48, 11769.
pmid: 21341741 |
|
(h) Komeyama K.; Kashihara T.; Takaki K. Tetrahedron Lett. 2013, 54, 1084.
pmid: 21341741 |
|
[12] |
Patil P.; Nimonkar A.; Akamanchi K. G. J. Org. Chem. 2014, 79, 2331.
|
[13] |
Bhuyan M.; Baishy G. Org. Biomol. Chem. 2022, 20, 9172.
|
[14] |
Schotten C.; Leprevost S. K.; Yong L. M.; Hughes C. E. Harris K. D. M.; Browne D. L. Org. Process Res. Dev. 2020, 24, 2336.
|
[15] |
(a) Saeki T.; Matsunaga T.; Son E.-C.; Tamao K. Adv. Synth. Catal. 2004, 346, 1689.
pmid: 38743509 |
(b) Liu C.; Miao T.; Zhang L.; Li P.; Zhang Y.; Wang L. Chem.- Asian. J. 2014, 9, 2584.
pmid: 38743509 |
|
(c) Zhang Y.; Li Y.; Zhang X.; Jiang X. Chem. Commun. 2015, 51, 941.
pmid: 38743509 |
|
(d) Cao D.; Zhang Y.; Liu C.; Wang B.; Sun Y.; Abdukadera A.; Hu H.; Liu Q. Org. Lett. 2016, 18, 2000.
pmid: 38743509 |
|
(e) Zhang Y.; Hu H.; Liu C. J.; Cao D.; Wang B.; Sun Y.; Abdukader A. Asian J. Org. Chem. 2016, 6, 102.
pmid: 38743509 |
|
(f) Mao S.; Chen Z.; Wang L.; Khadka D. B.; Xin M.; Li P.; Zhang S.-Q. J. Org. Chem. 2018, 84, 463.
pmid: 38743509 |
|
(g) Liu C.; Wang Z.; Wang L.; Li P.; Zhang Y. Org. Biomol. Chem. 2019, 17, 9209.
pmid: 38743509 |
|
(h) Sutar S. M.; Savanur H. M.; Malunavar S. S.; Prabhala P.; Kalkhambkar R. G.; Laali K. K. Eur. J. Org. Chem. 2019, 2019, 6088.
pmid: 38743509 |
|
(i) Liu Y.; Ma X.; Wu G.; Liu Z.; Yang X.; Wang B.; Liu C.; Zhang Y.; Huang Y. New J. Chem. 2019, 43, 9255.
pmid: 38743509 |
|
(j) Tang C.; Zhang Y.; Zhou X.; Wang B.; Jin W.; Xia Y.; Liu C. Synthesis 2022, 54, 5110.
pmid: 38743509 |
|
(k) Wang B.; Feng Y.; Zhang Y.; Wang S.; Zhou X.; Chen Z.; Xia Y.; Jin W.; Iqbal A.; Liu C.; Zhang Y. Eur. J. Org. Chem. 2023, 26, e202300044.
pmid: 38743509 |
|
(l) Gao J.; Song Q.; Zhang L.; Shao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Liu C.; Zhang Y. J. Org. Chem. 2023, 88, 11056.
pmid: 38743509 |
|
(m) Zhang L.; Gao J.; Wang B.; Iqbal A.; Jin W.; Xia Y.; Zhang Y.; Liu C. Org. Chem. Front. 2023, 10, 6063.
pmid: 38743509 |
|
(n) Wang B.; Shao Y.; Chen Z.; Xia Y.; Xue F.; Jin W.; Wu S.; Zhang Y.; Liu C. Org. Lett. 2024, 26, 4329.
doi: 10.1021/acs.orglett.4c01350 pmid: 38743509 |
|
[16] |
(a) Zhang Y.; Cao D.; Ma X.; Tang C.; Wang B.; Jin W.; Xia Y.; Liu C. ChemistrySelect 2021, 6, 5701.
|
(b) Wang B.; Cao D.; Ma X.; Feng Y.; Zhang L.; Zhang Y.; Liu C. Arabian J. Chem. 2021, 14, 103158.
|
|
[17] |
(a) Zhang T.; Wang Y.; Wang B.; Jin W.; Xia Y.; Liu C.; Zhang Y. Adv. Synth. Catal. 2022, 364, 1962.
|
(b) Zhang T.; Ren X.; Wang B.; Jin W.; Xia Y.; Wu S.; Liu C.; Zhang Y. Org. Chem. Front. 2024, 11, 1050.
|
|
[18] |
For selected reviews see: (a) Lazny R.; Poplawski J.; Köbberling J.; Enders D.; Bräse S. Synlett 1999, 8, 1304.
|
(b) Bräse S. Acc. Chem. Res. 2004, 37, 805.
|
|
(c) Kölmel D. K.; Jung N.; Bräse S. Aust. J. Chem. 2014, 67, 328.
|
|
(d) Zhang Y.; Cao D.; Liu W.; Hu H.; Zhang X.; Liu C. Curr. Org. Chem. 2015, 19, 151.
|
|
(e) Zhang Y.; Tang C.; Liu Y.; Liu C. Chin. J. Org. Chem. 2021, 41, 2587 (in Chinese).
|
|
(张永红, 唐承宗, 刘永红, 刘晨江, 有机化学, 2021, 41, 2587.)
doi: 10.6023/cjoc202102014 |
|
(f) Liu T.; Wu H.; Zhang Q.; Wang C. Org. Biomol. Chem. 2023, 21, 2059.
|
|
[19] |
Koziakov D.; Wu G.; Jacobi von Wangelin A. Org. Biomol. Chem. 2018, 16, 4942.
doi: 10.1039/c8ob00591e pmid: 29926882 |
[1] | 刘浩阳, 孙爽爽, 马献力, 陈艳艳, 徐燕丽. 可见光促进异腈插入反应合成硒代螺环[吲哚-3,3'-喹啉]衍生物[J]. 有机化学, 2022, 42(9): 2867-2876. |
[2] | 韩阳, 姜为超, 张靖, 彭进松, 陈春霞. 可见光促进钯催化C—H键胺化反应合成咔唑醌衍生物的研究[J]. 有机化学, 2022, 42(1): 266-276. |
[3] | 李祯龙, 金健, 黄莎华. 可见光直接促进的过渡金属催化交叉偶联反应研究进展[J]. 有机化学, 2020, 40(3): 563-574. |
[4] | 葛新, 赖依峰, 陈新志. 水解酶的非专一性催化在有机合成中的应用[J]. 有机化学, 2013, 33(08): 1686-1696. |
阅读次数 | ||||||
全文 |
|
|||||
摘要 |
|
|||||